RISK MANAGEMENT PLAN
MISSION BAY AREA
SAN FRANCISCO, CALIFORNIA

Submitted to:
California Regional Water Quality Control Board
San Francisco Bay Region

California Environmental Protection Agency
Department of Toxic Substances Control

Prepared by:
ENVIRON Corporation
Emeryville, CA

May 11, 1999
03-63818
Table of Contents

1.0 INTRODUCTION .. 1-1

2.0 PRINCIPAL ENVIRONMENTAL FINDINGS .. 2-1
 2.1 Principal Environmental Conditions Identified During the Soil and Ground Water
 Investigations ... 2-1

3.0 RISK MANAGEMENT MEASURES PRIOR TO DEVELOPMENT .. 3-1
 3.1 Introduction .. 3-1
 3.2 Risk Management Measures to be Implemented on Parcels Prior to Commencement of
 Development .. 3-2

4.0 RISK MANAGEMENT MEASURES DURING DEVELOPMENT ... 4-1
 4.1 Introduction .. 4-1
 4.2 Identification of Development Activities that Could Impact Human Health and/or the
 Ecological Environment ... 4-1
 4.3 Risk Management Measures to be Implemented During Development Activities 4-2
 4.3.1 Dust Control .. 4-3
 4.3.1.1 Specific Dust Control Measures .. 4-3
 4.3.1.2 Documentation of Dust Control Measures .. 4-5
 4.3.2 Dust Plan .. 4-5
 4.3.2.1 Part I: Sites Excluded from Dust Monitoring Program 4-6
 4.3.2.2 Part II: Dust Monitoring Program .. 4-8
 4.3.2.2.1 Monitoring Equipment ... 4-8
 4.3.2.2.2 Sampling Frequency .. 4-9
 4.3.2.2.3 Sampling Locations ... 4-9
 4.3.2.2.4 Recording of Quantitative Measurements ... 4-10
 4.3.2.2.5 Sampling Personnel .. 4-10
 4.3.2.2.6 Criteria for Emissions Mitigation Activities ... 4-11
 4.3.2.2.7 Reporting Requirement ... 4-11
 4.3.3 Control of Off-Site Runoff .. 4-11
 4.3.4 Methods to Minimize the Potential for Creating Conduits 4-15
 4.3.5 Soil Management Protocols During Site Development ... 4-16
 4.3.5.1 Measures to Minimize Dust and Erosion from Soil Movement and
 Handling .. 4-16
 4.3.5.2 Management of Soil Stockpiles .. 4-16
 4.3.5.2.1 Risk Management to Control Dust from Soil Stockpiles 4-16
TABLE OF CONTENTS (Continued)

4.3.5.2.2 Risk Management to Control Erosion from Stockpiles .. 4-17
4.3.5.2.3 Risk Management to Control Access to Stockpiles 4-18
4.3.5.2.4 Inspections of Soil Stockpiles ... 4-18
4.3.5.3 Reuse of Native Soil within the RMP Area ... 4-19
4.3.5.4 Soil Disposal ... 4-19
4.3.5.5 Soil for Landscaped Areas .. 4-20
4.3.5.6 Contingency Protocols for Identifying Unknown Areas of Contamination and/or Unknown Underground Structures 4-20
 4.3.5.6.1 Procedures for Discovery of Unknown Areas of Contamination .. 4-21
 4.3.5.6.2 Requirements for Underground Structures .. 4-24
 4.3.5.6.2.1 Removal Requirements for Underground Storage Tanks ... 4-25
4.3.5.6.2.2 Procedures Governing the Identification, Investigation and Removal of Other Subsurface Structures 4-25
4.3.6 Access Control During Construction .. 4-27
4.3.7 Protocols for Dewatering Activities ... 4-28
4.3.8 Construction Worker Management Measures ... 4-30
 4.3.8.1 Environmental Health and Safety Guidelines ... 4-31
 4.3.8.2 Components of the Environmental Health and Safety Plans .. 4-31
4.3.9 Quarterly Reporting During Development ... 4-39
4.3.10 Documentation of the Completion of Construction Work 4-39
4.3.11 Framework for Complying with the Ordinance Requirements for Analyzing the Soil for Hazardous Wastes .. 4-40

4.4 Additional Management Measures Applicable to Development in the Free Product Area ... 4-42
 4.4.1 Areas Presently Known as of April 1999 to be Impacted by Free Product ... 4-43
 4.4.2 Additional Management Measures ... 4-44

4.5 Process for Selecting and Approving a Daycare Center and/or School Location .. 4-46
 4.5.1 Daycare Centers or Schools Within Areas Currently Designated for Residential Uses .. 4-46
 4.5.2 Daycare Center or Schools Within Areas Currently Designated for Nonresidential Uses .. 4-47
TABLE OF CONTENTS (Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>RISKS MANAGEMENT MEASURES AFTER DEVELOPMENT IS COMPLETE</td>
<td>5-1</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>5-1</td>
</tr>
<tr>
<td>5.2</td>
<td>Identification of Potential Human Health and Ecological Impacts After Development is Complete</td>
<td>5-1</td>
</tr>
<tr>
<td>5.3</td>
<td>Long-Term Management of Risks After Development is Complete</td>
<td>5-2</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Covering of the RMP Area</td>
<td>5-2</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Limitations on Future Development Within the RMP Area</td>
<td>5-3</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Use of Shallow Ground Water Within the RMP Area</td>
<td>5-3</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Protocols for Future Subsurface Activities</td>
<td>5-4</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Long-Term Monitoring Program</td>
<td>5-4</td>
</tr>
<tr>
<td>6.0</td>
<td>REGULATORY OVERSIGHT AND ENFORCEMENT OF RMP</td>
<td>6-1</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Public Repositories of the RMP</td>
<td>6-1</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Contents of RMP Area File</td>
<td>6-2</td>
</tr>
<tr>
<td>6.2</td>
<td>Modifications to the RMP</td>
<td>6-2</td>
</tr>
<tr>
<td>6.3</td>
<td>Notification of Owners and Lessees and Identification of Compliance Obligations</td>
<td>6-3</td>
</tr>
<tr>
<td>6.4</td>
<td>Monitoring and Reporting</td>
<td>6-4</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Prior to Commencement of Development</td>
<td>6-5</td>
</tr>
<tr>
<td>6.4.2</td>
<td>During Development</td>
<td>6-5</td>
</tr>
<tr>
<td>6.4.3</td>
<td>After Development is Complete</td>
<td>6-7</td>
</tr>
<tr>
<td>6.5</td>
<td>Enforcement Authority</td>
<td>6-7</td>
</tr>
<tr>
<td>7.0</td>
<td>REFERENCES</td>
<td>7-1</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1: Mission Bay RMP Area
Figure 2: Mission Bay Land Use Plan
Figure 3: Identification of Free Product Area
Figure 4: Site Conditions Where Dust Monitoring is Required
Figure 5: Map of 1851 High Tide Line

LIST OF APPENDICES

Appendix A: Analytical Results for Soil and Ground Water
Appendix B: Health-Based Interim Target Levels (ITLs)
Appendix C: Reporting Checklist, and Inspection/Monitoring Sample Form
Appendix D: Soil Reuse Within RMP Area
Appendix E: Health-Based Site-Specific Target Levels (SSTLs) for Volatile Constituents
Appendix F: Ordinance Requirements for Analyzing the Soil for Hazardous Waste
Appendix G: Conceptual Site Model For Risk Evaluation: After Development is Complete
Appendix H: Legal Description of RMP Area
Appendix I: SWPPP Development Process
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABAG</td>
<td>Association of Bay Area Governments</td>
</tr>
<tr>
<td>Agency</td>
<td>San Francisco Redevelopment Agency</td>
</tr>
<tr>
<td>BMP</td>
<td>Best Management Practices</td>
</tr>
<tr>
<td>BTEX</td>
<td>benzene, toluene, ethylbenzene and xylenes</td>
</tr>
<tr>
<td>Cal/EPA</td>
<td>California Environmental Protection Agency</td>
</tr>
<tr>
<td>City</td>
<td>City and County of San Francisco</td>
</tr>
<tr>
<td>DataRAM</td>
<td>Real-time dust monitoring instrument</td>
</tr>
<tr>
<td>Development</td>
<td>defined in Section 1.0</td>
</tr>
<tr>
<td>DTSC</td>
<td>Department of Toxic Substances Control</td>
</tr>
<tr>
<td>EHASP</td>
<td>Environmental Health and Safety Plan</td>
</tr>
<tr>
<td>Fill</td>
<td>defined in Section 4.3.5.5</td>
</tr>
<tr>
<td>Free Product</td>
<td>defined in Section 4.4</td>
</tr>
<tr>
<td>FSEIR</td>
<td>Final Subsequent Environmental Impact Report</td>
</tr>
<tr>
<td>General Permit</td>
<td>General Permit for discharge of stormwater from construction sites per SWRCB Order No. 92-08 DWQ, discussed in Section 4.3.5</td>
</tr>
<tr>
<td>HI</td>
<td>Hazard Index</td>
</tr>
<tr>
<td>ITL</td>
<td>Interim Target Level; defined in Section 3.1</td>
</tr>
<tr>
<td>Inorganics</td>
<td>Metals (identified in Appendix A), Asbestos, Fluoride and Sulfide</td>
</tr>
<tr>
<td>Interim Period</td>
<td>defined in Section 3.1</td>
</tr>
<tr>
<td>IRRM</td>
<td>Interim Risk Management Measures</td>
</tr>
<tr>
<td>Native Soils</td>
<td>defined in Section 1.0</td>
</tr>
<tr>
<td>NPDES</td>
<td>National Pollutant Discharge Elimination System</td>
</tr>
<tr>
<td>OVA</td>
<td>Organic Vapor Analyzer</td>
</tr>
<tr>
<td>OVM</td>
<td>Organic Vapor Meter</td>
</tr>
<tr>
<td>Owner</td>
<td>defined in Section 1.0</td>
</tr>
<tr>
<td>PAH</td>
<td>Polycyclic Aromatic Hydrocarbons</td>
</tr>
<tr>
<td>PCBs</td>
<td>Polychlorinated Biphenyls</td>
</tr>
<tr>
<td>PEL</td>
<td>Permissible Exposure Limit; defined in Section 4.3.8.2</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>Particulate Matter with aerodynamic diameter less than 10 microns</td>
</tr>
<tr>
<td>PPE</td>
<td>Personal Protective Equipment; defined in Section 4.3.8.2</td>
</tr>
<tr>
<td>Redevelopment Plans</td>
<td>defined in Section 1.0</td>
</tr>
<tr>
<td>RMP</td>
<td>Risk Management Plan</td>
</tr>
<tr>
<td>RMP Area</td>
<td>defined in Section 1.0</td>
</tr>
<tr>
<td>RWQCB</td>
<td>Regional Water Quality Control Board for the San Francisco Bay Region</td>
</tr>
<tr>
<td>SSTL</td>
<td>Site Specific Target Level; defined in Section 4.3.5.5.1</td>
</tr>
<tr>
<td>SVOC</td>
<td>Semivolatile organic compounds</td>
</tr>
<tr>
<td>SFDPH</td>
<td>San Francisco Department of Public Health</td>
</tr>
<tr>
<td>SFPDWP</td>
<td>San Francisco Department of Public Works</td>
</tr>
<tr>
<td>SWPPP</td>
<td>Storm Water Pollution Prevention Plan</td>
</tr>
<tr>
<td>SWRCB</td>
<td>State Water Resources Control Board</td>
</tr>
<tr>
<td>TPH-d</td>
<td>Total Petroleum Hydrocarbons, in the diesel range</td>
</tr>
<tr>
<td>TPH-g</td>
<td>Total Petroleum Hydrocarbons, in the gasoline range</td>
</tr>
<tr>
<td>TPH-mol</td>
<td>Total Petroleum Hydrocarbons, in the motor oil range</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>UCL</td>
<td>Upper confidence limit</td>
</tr>
<tr>
<td>UCSF</td>
<td>University of California, San Francisco</td>
</tr>
<tr>
<td>USEPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>UST</td>
<td>Underground Storage Tank</td>
</tr>
<tr>
<td>VOC</td>
<td>Volatile Organic Compound</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

This Risk Management Plan (RMP), prepared by ENVIRON for the Mission Bay area, presents the decision framework and the specific protocols for managing the chemicals in the soil and ground water in a manner that is protective of human health and the ecological environment, consistent with the existing and planned future land uses, and compatible with long-term phased development. The RMP delineates the specific risk management measures that must be implemented prior to, during, and after development of each parcel within the Mission Bay area. The RMP was prepared following extensive environmental investigations and human health and ecological risk analyses, all of which were conducted by ENVIRON under the direction of the San Francisco Regional Water Quality Control Board (RWQCB) and other relevant regulatory agencies principally between 1996 and 1998. The workplans, site investigations, risk evaluations, and technical memoranda prepared between 1996 and 1998, in addition to numerous agency correspondence, are all on file at the RWQCB. These documents, and other environmental documents relevant to the RMP Area (as defined herein) submitted to the RWQCB and the City and County of San Francisco (City) are specified in a Document Index maintained by the RWQCB and the San Francisco Department of Public Health (SFDPH), as described in Section 6.1.2. For purposes of this RMP, the term "RWQCB" refers to the Regional Water Quality Control Board for the San Francisco Bay Region, its Executive Officer, or staff authorized to make decisions regarding the subject at issue.

This RMP was prepared solely for use within the RMP Area and is not intended to be applied for the management of risks within any area or project not otherwise explicitly identified in the RMP. The RMP satisfies the applicable provisions of mitigation measures J1 and J2 (and associated Mitigation Monitoring and Reporting Program), adopted by the San Francisco Board of Supervisors for the Mission Bay Project Area on October 19, 1998, that require that the project applicant develop and implement an RMP containing specified measures. Although this RMP sets forth the requirements to appropriately manage the chemicals in soil and ground water, the RMP is not intended to catalogue all other legal requirements that may apply to the project or to activities conducted within the RMP Area.
Current and future owners, occupants and managers, or contractors delegated or authorized to perform property maintenance or construction are required to comply with the measures identified in the RMP when engaging in the relevant activities discussed. A Covenant and Environmental Restriction ("Environmental Covenant") recorded against each parcel in the RMP Area will require Owner and/or Lessee (as described below) compliance with the RMP measures. The Environmental Covenant places responsibility for compliance with the Owner and/or Lessee of the parcel at the time the activity is conducted, even when such Owner or Lessee has contracted with another party to perform those measures. The term "Owner" or "Owners" as used in this RMP, shall mean those persons (whether individuals, corporations, or other legal entities) who, at such time when activities regulated by this RMP are conducted, hold title to a parcel in the RMP Area. With regard to any property held by more than one fee owner as part of a condominium or other common interest residential development where management of common areas is delegated to a homeowners association or other similar entity, the "Owner" for this RMP shall mean only the homeowners association or other similar entity, and individual unit or interest holders shall not be considered "Owners". The term "Lessee" or "Lessees" as used in this RMP shall mean those persons (whether individuals, corporations, or other legal entities) who, are entitled by ownership, leasehold, license, permit or other legal relationship with an Owner, to enter and exclusively occupy the RMP Area and to engage in activities that are regulated by this RMP. A former Owner or former Lessee, licensee, permittee, or other former holder of a property or contract right who, at such time when activities regulated by this RMP are conducted, no longer holds an interest in title to a parcel or no longer has a property or contract interest in a parcel, will not be considered an Owner or Lessee for purposes of this RMP.

Catellus Development Corporation (Catellus), the University of California at San Francisco (UCSF), the City and County of San Francisco (City), the Port of San Francisco, and the San Francisco Redevelopment Agency (Agency) have previously entered into a series of contractual agreements in which, for specified periods of time and for specified activities in particular areas, the one or another party has agreed to assume the responsibilities of the Owner of the parcel. The agreements may be modified over time, and new agreements may be executed among those parties and other parties. Nothing in this RMP is intended to nor will it abrogate those contractual commitments between the parties. The purpose of this RMP is to specify what
activities are required at particular times in particular areas. If contracts between the parties identify a performing entity for particular activities, then as between those parties that commitment shall govern.

The California Environmental Protection Agency (Cal/EPA) designated the San Francisco Regional Water Quality Control Board (RWQCB) as the "Administering Agency" under Assembly Bill (AB) 2061 on July 15, 1997. As the Administering Agency, the RWQCB is responsible for overseeing the site investigation and remediation of the Mission Bay area. The site investigations and risk evaluations were completed between December 1996 and April 1998 and were submitted to the RWQCB for their review and approval. On May 20, 1998 the RWQCB adopted Resolution 98-044, stating that the site investigations conducted in the Mission Bay area were complete and that the proposed plan for managing the remaining environmental conditions, through the preparation of an RMP and the submittal of an enforceable deed restriction, was satisfactory, recognizing that the investigation and remediation of the Free Product (as defined in Section 4.4) are being separately addressed in the RWQCB Order 98-028 (described further in Section 2.9). The human health standards that have been approved by the RWQCB as appropriate for the RMP Area (as defined herein) Mission Bay area are a cumulative cancer risk of 1×10^{-4} and a Hazard Index (HI) of 1.0. These are the standards that were used in all previous health risk evaluations, and are the standards that are appropriate to be used in any subsequent risk evaluations that may be conducted within the RMP Area.

The Mission Bay RMP Area (RMP Area) is identified in Figure 1. The RMP applies to all areas identified in Figure 1. As indicated in the Figure, the RMP Area generally consists of two Redevelopment Areas, Mission Bay North and Mission Bay South. However, the RMP Area and the two Redevelopment Area boundaries differ slightly along the banks of China Basin Channel and adjacent to San Francisco Bay, where instead of following the straight lines of the Redevelopment Area boundaries, the RMP Area extends to the edge of the high tide line, defined for the purposes of this RMP as 95 feet Mission Bay Datum elevation and covers the areas upland. A legal description of the RMP Area is included in Appendix H. Mission Bay North is approximately 65 acres in size and is generally bounded by Townsend and King Street to the northwest, Sixth and Seventh Streets to the southwest, Third and Fourth Streets to the northeast, and Berry Street and China Basin Channel to the southeast. Mission Bay North is located in a
mixed industrial and commercial area. Mission Bay South is approximately 230 acres and is generally bounded by China Basin Channel to the north, Third Street and San Francisco Bay to the east, Mariposa Street to the south, and Seventh Street to the west. Mission Bay South is located in a mixed industrial and commercial area.

The RMP Area will be developed as a mixed-use site, including multi-family housing (including both market rate and affordable, rental and for-sale units), public open space, retail and commercial uses, a hotel, a school, a police and fire station, and office, biotech, research and development facilities. In addition, approximately 43 acres will constitute an expansion campus for UCSF. A schematic of the Mission Bay land use plan is presented in Figure 2. When development is complete, the existing Native Soil (defined as soil that exists in the RMP Area prior to approval of the RMP) will be completely covered by buildings, streets, sidewalks and landscaping. All landscaped areas will contain between 1.0 and 1.5 feet of Fill (defined and discussed in Section 4.3.5.5). While there will be widely distributed public open space in the RMP Area, there will be no unrestricted access to the Native Soil.

Development of the Mission Bay RMP Area is anticipated to occur over many years. While development of the RMP Area is underway, many of the existing uses and structures would initially remain. However, over time, existing and interim uses and buildings would be replaced with land uses proposed within the Redevelopment Plans, which specifies the land use plans for Mission Bay North and South. Almost all buildings within the RMP Area will be demolished over time to permit full development of the RMP Area. Demolition activities will occur on a parcel-by-parcel basis, as development will be carried out in phases. The actual pace of construction will vary based on factors such as the rate of market absorption or by the availability of financing.

Soil and ground water investigations were conducted between 1996 and 1997 in order to characterize the environmental conditions in the RMP Area and to identify significant source areas that could impact human health and the environment. The site investigations discovered the presence of certain chemicals in the soils and ground water within the RMP Area. Because chemicals are present within the RMP Area, numerous risk evaluations were conducted to confirm that the site could be developed as planned, in a manner that would be safe for human health and the environment. This RMP represents the culmination of a series of investigations.
and analyses, all of which were aimed at identifying the significant environmental conditions within the RMP Area, analyzing the impact of those conditions on human health and the environment, and developing the appropriate range of risk management measures that would be effective in reducing any potential impacts. The environmental documents used in the development of the RMP are specified in a reference list contained in Section 7.0 of this RMP. While this RMP provides a summary of the various environmental findings in the site-specific environmental investigations, the reader should refer to the reports in Section 7.0 for more details regarding the specific findings of these investigations.

Since the development of the RMP Area will occur in phases over many years, some parcels will be occupied while surrounding parcels will be under construction. Thus, the risk management measures governing the RMP Area are presented for three overlapping time periods: the time period prior to development (Section 3.0), the time period during development (Section 4.0) and the time period after development is complete (Section 5.0). The risk management measures described for the three overlapping time periods are all important components of an overall integrated RMP that will govern the phased development and occupancy of the RMP Area occurring over many years. The term “development” is defined as the construction of new buildings, roads, infrastructure, landscaping, driveways, regrading, paving or the demolition of existing buildings, when such activities will include the disturbance of Native Soils or contact with the ground water.

A general outline for the RMP, identifying those sections of the RMP that delineate the management measures applicable to the different activities and phases of the development, is provided below. The intent of the outline is to enable any user of the RMP (i.e., contractor, Owner, person with maintenance responsibilities) to advance directly to the sections of the document which govern their activities or responsibilities.

Section 2.0: General Background Information on the Constituents Detected

- Section 2.0 presents a brief summary of the existing environmental conditions in the RMP Area, as identified during the soil and ground water investigations.
Section 3.0: Risk Management Measures Applicable to Parcels Prior to Development

- Section 3.0 describes the risk management measures that need to be implemented on the parcels within the RMP Area prior to the development of the parcel. The management measures identified in this section are applicable to all parcels until the time at which the development of those parcels is initiated (at which point Section 4.0 will apply). The parties who are responsible for complying with the management measures described in Section 3.0 include Owners, Lessees, or some other entity, such as a property management company, designated or certified by the Owner to conduct property maintenance activities.

Section 4.0: Risk Management Measures to be Implemented During the Development of Parcels

- Section 4.0 describes the risk management measures to be implemented during the actual development of given parcels. These risk management measures include dust control measures, soil management protocols, storm water pollution prevention plan requirements, worker health and safety planning requirements, and a framework for complying with the Ordinance Requirements for Analyzing the Soil for Hazardous Wastes. Section 4.0 also identifies specific management measures that may need to be implemented when development activities occur in the Free Product Area, as identified in Figure 3 (defined and discussed in Section 4.4). The parties who are responsible for complying with the management measures described in Section 4.0 include Owners, Lessees, or some other entity, such as a contractor, designated or certified by the Owner or Lessee to conduct property development and/or maintenance activities.

Section 5.0: Risk Management Measures After Development of a Parcel is Complete

- Section 5.0 describes the long-term management measures that will be implemented at each parcel after the development of that parcel is complete.
These management measures will need to be followed to manage and maintain the cover (which will consist of buildings, streets and landscaped areas) and in the event that construction or further development occurs at some point in the future. The individuals who are responsible for complying with the management measures described in Section 5.0 include Owners, Lessees, or some other entity, such as a property management company designated or certified by the Owner or Lessee to conduct property maintenance activities.

Section 6.0: Regulatory Oversight and Enforcement of RMP

Section 6.0 presents the regulatory oversight and enforcement mechanisms that will provide the structure for the risk management measures applicable to the RMP Area to remain in place and continue to be effective. This section identifies the process for modifying the RMP, and the mechanism through which Owners and Lessees will be notified of the RMP and informed of compliance obligations. This section also describes the Environmental Covenant that is recorded against each parcel and which will provide notice of and require compliance with the terms of the RMP. Additionally, this section describes the monitoring and reporting that will be required for each of the phases of the development and the process through which the RWQCB maintains the regulatory authority to enforce all provisions of the RMP.
2.0 PRINCIPAL ENVIRONMENTAL FINDINGS

2.1 Principal Environmental Conditions Identified During the Soil and Ground Water Investigations

This section provides a brief summary of the principal findings from the investigations conducted in Mission Bay North and Mission Bay South, highlighting those environmental conditions that guided the development of the risk management measures. The environmental investigations have been approved by the RWQCB as complete, and are on file at the RWQCB office and SFDPH, as described in Section 6.1. The information presented in this section has been summarized from the site investigation reports prepared for Mission Bay North (ENVIRON 1997) and Mission Bay South (ENVIRON 1998a; ENVIRON 1998b; ENVIRON 1998c). The reader should refer to these reports for more detail of the investigation results. As described in these reports, soil and ground water samples were analyzed for polychlorinated biphenyls (PCBs) and pesticides, semivolatile organic chemicals (SVOCs), volatile organic compounds (VOCs), total petroleum hydrocarbons in the gasoline, diesel and motor oil ranges, acidity and alkalinity (pH), asbestos and metals. Hydrogeologic findings, detailed discussions of chemical testing programs and the complete analytical data for each investigation are presented in the site investigation reports. Tabular summaries of the soil and ground water results are presented in Appendix A of this RMP. Impacts on water quality, public health and the environment posed by these compounds were evaluated in the context of the proposed land use. The results from the environmental investigations are as follows:

- Principal chemicals detected throughout the RMP Area were petroleum hydrocarbons and inorganics (which includes metals, such as lead). Total petroleum hydrocarbons (TPH) were detected throughout the RMP Area, in both the soil and the ground water. The majority of the detections correspond to the heavier end petroleum hydrocarbons, particularly in the diesel (TPH-d) and motor oil (TPH-mo) ranges. For the RMP Area as a whole, most of the higher detections of TPH are located in the region of former petroleum bulk storage, pipelines and transfer facilities near the Free Product Area (defined and discussed
in Section 4.4). Metals were detected throughout the RMP Area, in the soil and ground water. The distribution patterns of metals in the soil and ground water are not representative of isolated source areas; rather, the concentrations of metals are more likely related to the background concentrations associated with the Mission Bay fill materials placed at the turn of the century. Additionally, asbestos was detected in the soil throughout the RMP Area, and appears to be primarily associated with serpentinite rock which was imported to fill Mission Bay, although some areas contain serpentinite rock which is native to the Mission Bay area.

- Only low concentrations of Volatile Organic Compounds (VOCs), below risk-based site specific target levels (SSTLs), were detected in soil or ground water. Select volatiles (principally benzene, toluene, ethylbenzene and xylenes, collectively referred to as BTEX) were detected in limited concentrations, and tended to be concentrated around the former petroleum storage facilities.

- No chemicals were detected at concentrations that would pose a threat to human health or the aquatic ecosystem following the completion of the planned development, with the potential exception of the Free Product Area. Although the analyses have shown that the Free Product Area would not adversely impact human health either prior to or following completion of the planned development (ENVIRON 1998a; ENVIRON 1999), the potential impact that the free product may have on the aquatic ecosystem is the subject of additional investigations.

- The Free Product Area, east of Illinois Street near 16th Street (Figure 3), is the subject of additional investigations. These investigations are being conducted by a group of oil companies that formerly operated in the area, under RWQCB Order 98-028.
3.0 RISK MANAGEMENT MEASURES PRIOR TO DEVELOPMENT

3.1 Introduction

The purpose of the following section is to describe the interim risk management measures (IRMM) that will be implemented to minimize potential impacts associated with the exposed Native Soils that may exist on parcels within the RMP Area during the Interim Period, which is defined for each parcel as the period of time between: (i) the date that the RMP is approved and the Environmental Covenant is recorded against the parcel and; (ii) the commencement of development of that parcel. These management measures apply to all parcels within the RMP Area before development of the parcel commences; the IRMMs are developed to be protective of populations on both the undeveloped parcel and on developed parcels that may be located directly adjacent to areas that have not been developed and therefore may contain exposed Native Soils. The IRMMs are based, in part, on an analysis of the potential human health risks posed by the exposed Native Soils that exist on parcels within the RMP Area. The human health risk evaluation was conducted by developing chemical-specific interim target levels (ITLs) that will be protective of the human populations that could be exposed to the uncovered soils based on projected future uses, prior to commencement of development (ENVIRON 1999). A comparison of the concentrations of chemicals detected in soils to the health-based ITLs provided the basis for identifying areas where interim risk management measures are appropriate, and the foundation for developing an overall site-wide interim plan that will manage existing conditions in the RMP Area until development throughout the RMP Area is complete. Implementation of the IRMMs outlined in this section will reduce the potential human health impacts posed by exposed Native Soils prior to development, and will simultaneously fulfill other long-term property management objectives. Risk management measures outlined here are protective of human health and the environment during the respective Interim Periods for each parcel. The risk management measures that will be implemented to lessen impacts associated with the actual construction and development of parcels within the RMP Area (e.g., impacts associated with dust
generated during construction), including the soil management procedures and the measures to protect the construction workers involved in the buildout of the RMP Area, are discussed in Section 4.0.

3.2 Risk Management Measures to be Implemented on Parcels Prior to Commencement of Development

The risk management objective for the Interim Period is to protect current and future populations from the potential impacts associated with exposed Native Soils that exist on various parcels throughout the RMP Area. To achieve this objective, risk-based evaluations were conducted to determine whether exposure to Native Soils present on parcels within the RMP Area could pose a risk to populations who could be present in the RMP Area throughout the period of development. Health-based ITLs were calculated for each of the chemicals present in the exposed Native Soils using standard United States Environmental Protection Agency (USEPA) and Department of Toxic Substance Control (DTSC) risk assessment protocols. The ITLs were developed by assuming that human populations in the area could be exposed to the Native Soils through the inhalation of fugitive dusts, soil ingestion, and dermal contact exposure pathways for an extended 25- to 30-year period.

The results of the risk-based evaluations indicated that exposure to the chemicals present in the Native Soils through the inhalation of fugitive dusts generated from natural wind erosion will not adversely impact the health of either current or future populations who may be present in or adjacent to the RMP Area. In addition, mean chemical concentrations in surface soil (estimated by calculating the 95 percent upper confidence limit (UCL) of the arithmetic mean) were below the ITLs developed under assumptions of long-term (i.e., 25 to 30 years) direct contact pathways (i.e., soil ingestion and dermal contact). However, several individual locations within the RMP Area contain chemicals (primarily metals) that exceed the health-based ITLs. The health-based ITLs (Tables B-1 through B-3), a comparison of the lowest of the ITLs to concentrations detected within the RMP Area (Table B-4), and a figure indicating the specific locations where levels of chemicals exceed the health-based ITLs (Figure B-1), are presented in Appendix B.
Although a review of the average concentrations of chemicals in surface soils indicates that even long-term (i.e., 25 to 30 year) direct contact with exposed Native Soil would not be expected to adversely impact human health, any form of risk management that minimizes long-term direct contact with the Native Soils will be effective in minimizing potential risks associated with long-term direct contact with the soils and will be protective of all individuals that may be present in the RMP Area throughout the Interim Period. Risk management measures which will restrict unauthorized access to the exposed Native Soils will minimize the potential for long-term direct contact, and will provide additional benefits such as limiting the unauthorized use of the RMP Area by trespassers, reducing the potential for unauthorized dumping, and improving the overall aesthetic quality of the area. Given the multiple benefits gained from controlling access, the following IRMMs will be implemented by Owners or their designees:

i) **Install Fencing and Gates to Restrict Unauthorized Access to Exposed Native Soils.** Fencing and gates will be installed on all parcels that contain areas of exposed Native Soils, as depicted in Figure B-2. The fences will be chain link or equivalent fences that are a minimum of 6 feet in height. The fences will be of sufficient integrity such that they can withstand adverse weather conditions (e.g., heavy rains or winds). As indicated in Figure B-2, the portions of the RMP Area that are not fenced include: i) areas that are covered by asphalt, concrete, or buildings; or ii) railroad right-of-ways which are covered with a minimum of one-foot of ballast (aggregate). The installation of fencing will restrict unauthorized access to vacant parcels with exposed Native Soil. Fencing will also limit the potential for vehicles to travel on unauthorized areas and generate dusts. In addition to the installation of fencing, “No Trespassing” signs will be posted every 250 feet to inform individuals that access to the fenced areas is illegal. Fencing will remain until the areas of exposed Native Soils are covered or until development of a parcel commences, at which time the management measures governing the development of a parcel (described in Section 4.0) must be
followed. It is the responsibility of the Owner or Lessee of each parcel (or the Owner or Lessee’s delegate) to maintain fencing.

ii) **Install Fencing on Parcels that Become Vacant During the Interim Period.** Any parcels where demolition or other activities will result in the uncovering of soils during the Interim Period shall be fenced within three working days after demolition so that access to any exposed Native Soils on the parcels is restricted. As described above, fencing will be maintained until development of the parcel commences or the parcel is paved or otherwise covered.

iii. **Regulatory Approval Required for Specified Interim Uses.** As described in the Redevelopment Plans, there will from time to time be additional industrial/commercial uses which may occur in areas with exposed Native Soils within the RMP Area prior to the time “development”, as defined in Section 1.0, occurs. A comparison of the maximum concentrations detected in the surface soils to the ITLs developed for the commercial/industrial scenario indicates that only substantial daily contact with exposed Native Soils occurring for more than two and one-half years would potentially be of concern and would warrant any form of further evaluation or regulatory approval. New interim leases, which would permit substantial contact with exposed Native Soils for more than two and one-half years are not permitted, absent written approval of the RWQCB. The phrase “substantial contact with exposed Native Soils” would include any enterprise whose primary area of activity was located over or in the exposed Native Soils. An example of a new interim lease that would require RWQCB approval would include a parking lot operation located on exposed Native Soils where employees could potentially be continuously exposed to such Native Soils for more than 2.5

1 The threshold exposure period of two and one-half years was determined by adjusting the commercial worker ITLs to account for worker exposures that might occur for periods of less than the assumed 25 years. Commercial worker ITLs developed assuming daily direct contact with soils for 2.5 years (as opposed to the default assumption of 25 years) are less than the maximum concentrations detected in the surface soil across the RMP Area.
years. Examples of contact with exposed Native Soils which are not substantial in nature are businesses whose route of egress and ingress involve driving or walking across such Native Soils or involves employee parking on such Native Soils.

iv) Notification of Tenants. All Lessees and other tenants in the RMP Area will be notified by the Owner that the existing cover (asphalt, concrete, vegetation) is to remain intact. Lessees and tenants will be informed of the need to adopt certain health and safety measures, described in Section 4.0 of this RMP, if such measures are necessary.

v) Conduct All Subsurface Repair Work in Compliance with the Worker Health and Safety Guidelines. All subsurface repair work where workers will come into direct contact with Native Soils, such as the repair of an existing utility or sewer line, will be conducted in compliance with the relevant health and safety guidelines, as described in Section 4.0.

vi) Conduct Periodic Monitoring. In order to verify that the risk management measures that are implemented remain effective in restricting unauthorized access to exposed Native Soils during development of the RMP Area, the RMP Area will be inspected on a quarterly basis by the respective property Owners (or designees). The inspections will be conducted to verify that the access restriction measures are in place, and will identify areas where temporary fencing might need to be reinstalled. Additionally, the monitoring will include inspections of the asphalt-covered areas to verify that breaches in the existing cover have not occurred. A breach in the cover is a condition in which prolonged direct contact with Native Soils could occur. If the inspections identify areas where the fencing has been removed, or the existing cover has been breached, then one of the following response actions will be implemented as soon as reasonably practicable: 1) restore the fencing or install new fencing; or 2) repair the cover. Owners shall
submit copies of the quarterly inspection reports to the RWQCB and the SFDPH by January 31 of each year on an annual basis. A Reporting Checklist is presented in Appendix C, identifying each management measure and the specific reporting requirements for the different periods of development. A sample inspection sheet, which contains the minimum items that are to be inspected during the monitoring program, is also provided in Appendix C.

vii) **Existing Soil Stockpiles:** Management of soil stockpiles that exist within the RMP Area prior to the commencement of development, will occur in accordance with the soil stockpile procedures delineated in Section 4.3.5.2.

Implementation of these IRMMs will control access to exposed Native Soils that exist within the RMP Area and may exist throughout the Interim Period, and will protect the health of individuals who may be present during the phased development and occupancy of the RMP Area. This Section 3.0 is not intended to and does not set forth all environmental requirements unrelated to hazardous materials which might apply to the RMP Area prior to development, such as general dust control requirements. Any such applicable requirements will continue to apply independent of the RMP.
4.0 RISK MANAGEMENT MEASURES DURING DEVELOPMENT

4.1 Introduction

The purpose of the following section is to identify the appropriate risk management measures that will be implemented to control potential impacts to human health and the environment associated with exposure to constituents present in the soil and ground water that could result from the construction activities and development of the RMP Area. The risk management measures were developed following the identification and analysis of each potential impact; implementation of these management measures will protect human health, including on-site construction workers, nearby residents and workers, and the environment from potential impacts that may arise during the construction and development of the RMP Area. As described below in Section 4.3.11, additional sampling may be required on individual development parcels in order to comply with the Ordinance Requirements for Analyzing the Soil for Hazardous Wastes in Appendix F. Depending on the results obtained during any additional sampling, supplemental management measures, in addition to the management measures identified below, may be required on a parcel-by-parcel basis.

Section 4.2 identifies the potential activities associated with the construction and development of the RMP Area that could impact human health and the ecological environment. The risk management measures that will be implemented during development within the RMP Area are described in Section 4.3. Section 4.4 describes measures to be implemented in the Free Product Area in addition to those described in Section 4.3.

4.2 Identification of Development Activities that Could Impact Human Health and/or the Ecological Environment

Development activities in the RMP Area are likely to include various site preparation activities, such as but not limited to excavation, stockpiling, trenching, grading, backfilling and dewatering that will disturb the Native Soils and ground water within the RMP Area.

Based on the types of constituents detected in the Native Soils and ground water (discussed in Section 2.0), the potential events or activities associated with the development of
the RMP Area that could result in potential impacts on human health and/or the ecological environment without implementation of appropriate risk management measures are listed below.

- Dust generation associated with soil excavation and trenching, grading and loading activities, backfilling, movement of construction and transportation equipment, and fugitive dust generation from winds traversing an exposed soil stockpile;
- Off-site transport of soils as sediments through surface water run-off from exposed soil stockpiles and graded areas;
- The inadvertent creation of horizontal conduits from utility trenches resulting in preferential pathways for ground water flow within the RMP Area;
- Management/movement of soils during construction;
- Identification of unknown subsurface structures and unknown areas of contamination;
- Unauthorized access to site during construction; and
- Dewatering activities.

The risk management measures that will control potential impacts associated with each of the events or activities listed above are described in the following section. Management measures that will be implemented to control potential impacts on the construction worker, contractors and short-term intrusive workers who may be engaged in limited excavation activities such as utility repair, are also described below.

4.3 Risk Management Measures to be Implemented During Development Activities
The following subsections identify the risk management measures that will be implemented to reduce potential impacts from the development of the RMP Area and describe the compliance monitoring that will be implemented during development. The risk management measures described below are applicable to all locations within the RMP Area. Additional management measures that will be implemented during development within the Free Product Area are described in Section 4.4.
4.3.1 Dust Control

Contractors will implement the following dust control measures during development activities in order to minimize and control the generation of dust. Effective dust control will reduce potential impacts on construction workers, and will simultaneously control nuisance dust and dust containing chemicals from migrating outside of the development area to surrounding populations. Dust control measures will minimize dust that may be generated from excavation and trenching activities, grading, the loading of trucks, truck traffic, and soil stockpiles. The dust control measures described below apply to soil stockpiles that are in place for less than a 30-day period (referred to as construction stockpiles). Management measures specific to stockpiles that are stored for more than 30 days are identified in Section 4.3.5.2.

Prior to the initiation of development on a given parcel, the Owner, Lessee, or their designee (most likely a contractor) will submit to SFDPH and to the RWQCB written notification indicating whether the proposed development is of the type that will require dust monitoring, as described in Section 4.3.2.

4.3.1.1 Specific Dust Control Measures

The dust control measures that will be implemented at all construction sites within the RMP Area are identified below. The dust control measures identified below correspond to the PM_{10} control measures recommended by the Bay Area Air Quality Management District (BAAQMD) in their California Environmental Quality Act Guidelines. The BAAQMD dust control guidelines are to be implemented during construction activities regardless of whether chemicals are present in the soil. Some of the dust control measures recommended by the BAAQMD, as described below, are similar to the measures that will be implemented to control off-site runoff, described in Section 4.3.3. Where management measures specified to control dust are different from those specified to control off-site runoff, the more stringent of the measures will apply.

The following dust control measures will be implemented at construction sites of all sizes:
- Water all active construction areas at least twice a day or as necessary to prevent visible dust plumes from migrating outside of the parcel under development.
- Enclose, cover, water twice daily, or apply (non-toxic) soil binders to exposed construction stockpiles. Management measures for stockpiles stored for more than 30 days are described under Section 4.3.5.2.
- Mist or spray water while loading transportation vehicles.
- Minimize drop heights while loading transportation vehicles.
- Use tarpaulins or other effective covers for trucks carrying soils that travel on streets.
- Pave, apply water three times per day, or apply (non-toxic) soil stabilizers on all unpaved access roads, parking areas and staging areas at construction sites.
- Sweep daily all paved access routes, parking areas and staging areas.
- Sweep street daily if visible soil material is carried onto public streets.

If construction sites are greater than four acres in size, then the following additional dust control measures will be implemented:

- Hydroseed or apply (non-toxic) soil stabilizers to inactive construction areas (previously graded areas inactive for ten days or more).
- Limit traffic speeds on unpaved roads to 15 miles per hour (mph).
- Install sandbags or other erosion control measures to prevent silt runoff to public roadways (discussed further under the control of off-site runoff, Section 4.3.3).
- Replant vegetation in disturbed areas as quickly as possible.

The following additional optional dust control measures may be implemented by the contractor, as necessary, particularly if windy conditions persist before the area being developed is covered. A determination as to whether optional dust control measures should be implemented will be made by the contractor on a case-by-case basis based, in
part, on the results of the Dust Plan outlined in 4.3.2. Additional control measures that could be implemented to reduce dust may include:

- Installing wheel washers for all exiting trucks, or wash off the tires or tracks of all trucks and equipment leaving the site.
- Installing wind breakers, or plant trees/vegetative wind breakers at windward sides(s) of construction areas.
- Suspending excavation and grading activities when winds (instantaneous gusts) exceed 25 mph.
- Limiting the area subject to excavation, grading and other construction activities at any one time.

4.3.1.2 Documentation of Dust Control Measures

Contractors will keep daily logs of all dust control measures that are implemented throughout the course of the day. Logs will be kept on file for three months following the completion of the activities that triggered implementation of the dust control measures.

4.3.2 Dust Plan

In conjunction with the dust control measures identified above, the Owner or Lessee, (or some other entity, such as a contractor, designated or certified by the Owner or Lessee), will follow this dust plan (the “Plan”) during construction activities to demonstrate that the health and safety of all off-site populations (where off-site refers to areas outside of the construction zone) is not being adversely impacted by the construction/development activities based on the chemicals that could be attached to the dusts. Potential exposures to the onsite construction worker are discussed in Section 4.3.8. If the Plan described in the following sections is implemented, then additional regulatory approvals will not be required.

A screening-level risk analysis was conducted to determine the potential impacts associated with unmitigated dusts generated during construction activities (ENVIRON 1998b). Based on the results of the risk analysis, it was concluded that as long as the annual average respirable dust levels at off-site receptor locations remained below 250 µg/m³, exposure to the
chemicals that may be attached to the dusts will not adversely impact human health. This analysis assumed that exposure to the dusts will occur continuously for 20 years. Accordingly, the Plan has been devised to verify that the long-term average off-site dust levels to which individuals could be exposed during the course of the 20-year development are at or below the 250 μg/m³ target level.

The Plan is comprised of two parts. The first part identifies those conditions where real-time dust monitoring is not required. The exclusion of certain sites from the dust monitoring requirements was based on a conservative screening-level analysis. Those sites where it was concluded that off-site annual average concentrations would not exceed 250 μg/m³ were identified, and will be exempt from the dust monitoring requirements. The second part of the Plan presents a real-time dust monitoring program (the “Program”). An Owner or Lessee (or some other entity, such as a contractor, or qualified consultant, designated or certified by the Owner or Lessee) can implement the following procedures or can choose to prepare its own monitoring program, as long as it has, at a minimum, the elements of the Program described in Part II below. In the sections below, ‘Site’ is defined as the area on which the development by that contractor is occurring. ‘Dust-generating activity’ is defined to be the activity for which dust monitoring may be necessary, and includes grading, excavation, trenching, soil stockpiling, backfilling, the handling and movement of Native Soils, or vehicular traffic on an unpaved surface.

4.3.2.1 Part I: Sites Excluded from Dust Monitoring Program

Implementation of a dust monitoring program will not be necessary if it can be shown that the off-site annual average concentration will not exceed 250 μg/m³. Listed below are situations for which PM₁₀ (i.e., particulate matter with aerodynamic diameter less than 10 microns in diameter) concentrations will not exceed an annual average concentration of 250 μg/m³, even assuming the dust control measures identified in Section 4.3.1 have not been implemented. The following examples are not intended as a comprehensive list; if an Owner or Lessee (or some other entity, such as a contractor, or qualified consultant, designated or certified by the Owner or Lessee) can demonstrate to the RWQCB other conditions satisfying the 250 μg/m³ threshold, a monitoring program will not be required.
Note that even if a monitoring program is not required, the dust control measures discussed in Section 4.3.1 are still required.

- Potentially exposed populations are not closer than the distances shown in Figure 4. Worst-case annual average concentrations were modeled using USEPA's SCREEN3 air dispersion model to determine the distance at which ambient concentrations will be below an annual average of 250 µg/m³. Modeling was performed for an area source using an uncontrolled emission rate of 51 lb/acre/day (used in the Mission Bay Final Subsequent Environmental Impact Report (FSEIR) as the estimate of emissions from construction sites) and worst-case meteorological conditions.

 Figure 4 presents the relationship between the size of the Site (determined by either the length or width of the Site, whichever is greater) and the distance at which the annual average concentration will be below 250 µg/m³, and identifies those combinations where dust monitoring will not be required. Conditions that fall above the line in Figure 4 would not require any dust monitoring, whereas conditions below the line would require implementation of the dust monitoring program described below. As an example, if the length of the Site (widest or longest dimension) is 440 feet, dust monitoring would need to be conducted if receptors (i.e., off-site workers or residents) are located within 100 feet of the Site.

- Repair or maintenance of underground utility lines. In contrast to large grading projects, underground utility maintenance or repair projects are typically relatively narrow in depth and width would thus not normally provide a significant source area for dust to be generated and sustained. A dust monitoring program will not be implemented during underground utility maintenance or repair work.
• **Dust-generating activities that occur for less than four weeks.** The analysis from which the acceptable dust concentration was derived assumes that the exposure would occur continuously for 20 years. A four-week project represents less than 0.4 percent of this total assumed 20-year exposure period. Since it is unlikely that dust-generating activities occurring for a period of less than four weeks will contribute significantly to an individual’s total dust exposure during construction activities in the RMP Area, dust generating activities that occur for less than four weeks will not require any dust monitoring.

4.3.2.2 **Part II: Dust Monitoring Program**

The objective of the Dust Monitoring Program (the “Program”) is to collect data that is reflective of the levels of dusts generated during construction activities so that additional dust suppression measures can be implemented, if necessary, to reduce potential impacts to nearby populations. The Program will consist of real-time monitoring for PM\textsubscript{10} concentrations, as discussed in the following sections. Except as exempted in Section 4.3.2.1 above, the Program must be implemented during the period when development of the Site will involve dust-generating activities. However, once the development of a Site reaches a point that dust-generating activities are no longer occurring, dust monitoring will not be necessary. Compliance with the Program will be the responsibility of the Owner or Lessee (or some other entity, such as a contractor, or qualified consultant, designated or certified by the Owner or Lessee). Construction personnel will be periodically briefed in the field about the substance of the Program and will inform the construction supervisor if the dust levels exceed the criteria.

4.3.2.2.1 **Monitoring Equipment**

Monitoring will be performed for PM\textsubscript{10} using a portable real-time dust monitor, such as a DataRAM or equivalent instrument. The monitor will have a minimum detection limit of no more than 100 \(\mu\text{g/m}^3\), a minimum accuracy of 1 \(\mu\text{g/m}^3\) or 1 percent, and should be
calibrated to greater than 250 µg/m³. Calibration of the monitor will be based on the manufacturer's specifications.

4.3.2.2.2 Sampling Frequency
There are two options available for sampling frequency that meet the objectives of the Program. For Option One, sampling will occur during the first two days of a new operation involving dust-generating activities, as well as every day that a new dust-generating activity occurs on the Site. Samples will be collected once per hour, for a duration of 10-15 minutes, by a site walker carrying the dust monitor. If the concentrations on-site never exceed 250 µg/m³ during these first two days, sampling will occur one day per week for the remainder of the dust-generating activity, unless the 10-minute average concentration exceeds 250 µg/m³ during one of the once-a-week sampling events. If the 10-minute average concentration exceeds 250 µg/m³ during one of the once-a-week sampling events, then sampling must occur daily or until two successive day sampling events occur with no exceedance of the 250 µg/m³ threshold.

For Option Two, sampling will occur continuously during any dust-generating activity. The dust monitor will be set up in one location, as discussed below. The monitor will be checked four times during the course of the day to ensure that concentrations are not exceeding an average of 250 µg/m³.

4.3.2.2.3 Sampling Locations
Samples will be collected as close to the center of the dust-generating activity as possible. In this way, samples will represent worst-case levels of dust to which the nearby populations could be exposed. Samples typically should be collected from an approximate height of five feet above the ground surface.

If sampling is occurring with a site walker (Option One), the walker should start as close to the dust-generating activity as possible. If the concentrations are approaching 250 µg/m³, the walker should move towards the downwind Site boundary and continue to take measurements without interfering with the construction activities. Factors that will be taken into account when selecting the walker's route and destination will include the
local wind direction, the location of the dust generation, the location of the nearest Site boundary and the nearest off-site receptors. A demonstration that the levels within or directly downwind of the dust-generating activities are below 250 μg/m³ is sufficient documentation that levels off-site are well below the threshold.

If sampling is occurring through the use of continuous monitoring (Option Two), the monitor should be stationed as close to the dust-generating activity as possible without interfering in the activity. When the monitor needs to be stationed at the edge of the dust-generating activity due to the nature of the dust-generating activity, the monitor should be placed on the downwind side of the Site. Unless site-specific data to the contrary is available, downwind will be to the east-southeast of the dust generating activity (consistent with the information used in FSEIR). As with Option One, other factors should also be taken into account when locating the monitor, including the local wind direction, the location of the dust generation, the location of the nearest Site boundary and the nearest off-site receptors. It should be noted that during the course of the day, it may be necessary to relocate the dust monitor as any of these Site conditions change. A demonstration that the levels within or directly downwind of the dust-generating activities are below 250 μg/m³ is sufficient documentation that levels off-site are well below the threshold.

4.3.2.2.4 Recording of Quantitative Measurements
All PM₁₀ data should be logged with a data recorder, downloaded from the DataRAM or equivalent instrument, and attached to the field logbook. Notes regarding the location of the monitors, the dust generating activities, and the nearby populations should also be recorded in the field logbook. In addition, any recommended mitigation and follow-up measurements will also be recorded.

4.3.2.2.5 Sampling Personnel
The sampling personnel should be selected at the initiation of the project, along with a backup person, in case the first person is absent. The individual conducting the sampling
should be an individual experienced with the operation and handling of the sampling equipment to be used.

4.3.2.6 Criteria for Emissions Mitigation Activities

If the on-site, day-long average concentrations exceed 250 μg/m³, additional dust suppression measures as discussed in Section 4.3.1 shall be implemented for the next day, assuming the dust-generating activity continues to occur. Furthermore, additional dust suppression measures should be implemented if visible dust plumes are seen crossing the site boundary, regardless of the measured PM₁₀ concentrations.

4.3.2.7 Reporting Requirements

If the on-site, day long average concentrations exceed 250 μg/m³, the RWQCB and the SFDPH will be notified by telephone as soon as practicable. A brief letter report describing the exceedance, and the response undertaken by the contractor to achieve compliance will be submitted to the RWQCB and the SFDPH within 5 business days after the exceedance.

4.3.3 Control of Off-Site Runoff

To minimize risks associated with storm water runoff during construction, Storm Water Pollution Prevention Plans (SWPPP) that meet the objectives of the San Francisco RWQCB will be developed by the Owner or Lessee (or some other entity, such as a contractor, designated or certified by the Owner or Lessee) which undertakes construction activities in the RMP Area. Preparation and implementation of a SWPPP is required regardless of whether any chemicals are present in the soil. A primary goal of the SWPPP is to reduce or eliminate off-site discharge of sediments and other pollutants during construction activities. If these procedures are implemented, then potential releases of chemicals in the soils will also be controlled. The SWPPPs will be prepared in accordance with SWRCB Order No. 92-08 DWQ (the “General Permit”) and guidelines contained in the following documents: “Information on Erosion and Sediment Controls for construction Projects: A Guidebook (RWQCB 1998a)” or later edition; and “Erosion and Sediment Control Field Manual” second or later edition (RWQCB, 1998b).
or succeeding regulatory guidance documents. The provisions of the General Permit require the implementation of Best Management Practices ("BMPs") to control and abate the discharge of sediments, the monitoring of the BMPs to verify their effectiveness in controlling discharges, and revising the BMPs, if necessary.

For the RMP Area, the SWPPP development will be divided into two sequential phases: 1) the development of a "Conceptual SWPPP" that covers the entire Mission Bay RMP Area; and 2) the development of site-specific SWPPPs prepared for each applicable individual construction project. A brief description of each of the two phases is provided below.

Phase 1: Conceptual SWPPP for Mission Bay RMP Area

The Conceptual SWPPP prepared for the entire RMP Area is to be submitted to the RWQCB within 120 days after approval of the RMP. The general process for preparing the Conceptual SWPPP is described in Chart I-1 of Appendix I. As indicated in Chart I-1, the Conceptual SWPPP will consider the proposed outline presented in Table I-1 (in Appendix I), and will include those general elements that are practicable to include during the conceptual phase and that are not dependent on the specific details of the construction activities which will not be known until later. The Conceptual SWPPP will also address the pollution prevention measures for dry and wet months from construction related activities.

The initial step in the development of the Conceptual SWPPP is to define the organizational structure for the site-specific SWPPPs' Pollution Prevention Teams (PPTs) that will be responsible for preparing, implementing, and monitoring compliance with each of the site-specific SWPPPs. The Conceptual SWPPP will identify the essential roles of these PPTs and will describe the responsibilities each team will have in implementing, monitoring and enforcing its own site-specific SWPPP. Additionally, the training requirements for the members of each site-specific SWPPP's PPT will be described in the Conceptual SWPPP.

Phase 2: Site-Specific SWPPPs

Following development of the Conceptual SWPPP, site-specific SWPPPs will be prepared as individual parcels in the RMP Area are developed. The overall process for preparing the site-specific SWPPP is described in Chart I-2 of Appendix I. The site-specific SWPPP will follow
the proposed outline in Table I-1. A site-specific SWPPP must be developed by the Owner or the Lessee which undertakes the construction activities (or some other entity, such as a contractor, designated or certified by the Owner or Lessee) for each construction project in the RMP Area greater than one acre in size, if the construction activities will involve soil disturbance as defined in 40 CFR Parts 122-124 and State Water Resources Control Board (SWRCB) Order 92-08 DWQ. As indicated in Chart I-2, the site-specific SWPPPs will largely follow the Conceptual SWPPP, but will include additional site-specific pollution prevention procedures and specific inspection, monitoring and record keeping procedures for the given construction activities at that particular development area. Site inspections, to determine the effectiveness of the BMPs and identify repair needs, will be conducted routinely during the dry months and more frequently during the wet months. In conformance with the Conceptual SWPPP, the site-specific SWPPP will identify the name, organization and phone numbers of the Pollution Prevention Team members who are responsible for preparing, implementing, monitoring compliance, enforcing, and revising the site-specific SWPPP, if necessary. The site-specific SWPPP will include requirements that those with inspection responsibilities are qualified and/or trained in the field of erosion and sediment control practices and are familiar with the storm water pollution control rules and regulations.

Compliance with the site-specific SWPPP is the responsibility of the Owner or the Lessee which undertakes the construction activities (or other entity, such as a contractor who is knowledgeable in erosion and sediment control, designated or certified by the Owner or Lessee).

The SWPPPs will identify, at a minimum, the following BMPs\(^2\), or substantially equivalent measures as described in detail in the above references (ABAG 1995 and RWQCB 1998b).

- Minimize dust during demolition, grading, and construction by lightly spraying exposed soil on a regular basis.

\(^2\) These nine BMPs are requirements set forth in the FSEIR.
- Minimize wind and water erosion on temporary soil stockpiles by spraying with water during dry weather and covering with plastic sheeting or other similar material during the rainy season (October through April).
- Minimize the area and length of time during which the site is cleared and graded.
- Prevent the release of construction pollutants such as cement, mortar, paints, solvents, fuel and lubricating oils, pesticides, and herbicides by storing such materials in a bermed, or otherwise secured area.
- As needed, install filter fences around the perimeter of the construction site to prevent off-site sediment discharge. Prior to grading the bank slopes of China Basin Channel for the proposed channel-edge treatments, install silt or filter fences to slow water and remove sediment. As needed, properly trench and anchor the silt or filter fences so that they stand up to the forces of tidal fluctuation and wave action and do not allow sediment-laden water to escape underneath them.
- Install and maintain sediment and oil and grease traps in local stormwater intakes during the construction period, or otherwise properly control oil and grease discharges.
- Clean wheels and cover loads of trucks carrying excavated soils before they leave the construction site.
- Implement a hazardous material spill prevention, control, and cleanup program for the construction period. As needed, the program would include measures such as constructing swales and barriers that would direct any potential spills away from the Channel and the Bay and into containment basins to prevent the movement of any materials from the construction site into water.

Additional BMPs that may be included in the SWPPPs include the following:
• Stabilize all banks during rainy months using Interim or Permanent BMPs (e.g., an erosion control blanket).
• All construction entrances and exit points will be stabilized per RWQCB Erosion Control Field Manual to minimize tracking of mud outside the parcel boundaries.

4.3.4 Methods to Minimize the Potential for Creating Conduits

Utility trenches will be constructed within the RMP Area for the installation of underground utilities along alignments in the streets and on individual parcels. The trench depths could vary from approximately two to ten feet below ground surface (bgs). In general, the depth to ground water in the RMP Area is between two to ten feet bgs. If the trenches extend into the ground water, then the presence of such trenches could create a horizontal conduit for ground water flow and migration of chemicals. The management measures that will be implemented to minimize the potential for creating horizontal conduits include the following:

• Material that is less permeable than the surrounding soil will be placed through a variety of methods at 300-foot intervals and at the RMP Area boundaries along the trench to disrupt the flow within the trench backfill. One method during initial trench backfilling is the construction of a short section backfilled with a concrete or cement and bentonite mixture. Another method is the creation of a clay plug by compacting clay around the pipe for about a five-foot section of trench. A third method is the installation of barrier collars around the pipes by forming and pouring concrete in place. The appropriate method will be determined by a qualified environmental professional.

The ground water monitoring data collected to date have identified only one “plume” area (i.e., the Free Product Area) where the preferential ground water flow through the trenches could result in the migration of chemicals to nonimpacted areas. Nevertheless, to assure control of chemicals by way of preferential horizontal ground water flow, one or more of the management measures identified above will be incorporated by the contractor as standard trench construction protocol wherever the trenches in the RMP Area extend below the surface of the ground water.
unless a qualified environmental professional determines that the ground water conditions do not warrant such measures.

4.3.5 Soil Management Protocols During Site Development
The following section presents the management protocols for handling, moving, stockpiling, and reusing soils during the development of the RMP Area and delineates the contingency protocols to be followed when unknown contamination or underground structures are identified.

4.3.5.1 Measures to Minimize Dust and Erosion from Soil Movement and Handling
Throughout the development of the RMP Area, soil may be handled and moved from one portion of the Project Area to another location (See Appendix D: Soil Reuse Within the Mission Bay Area). Impacts from soil movement can result from exposures to dusts generated during the soil handling and movement, and from exposures to soils that have been transported outside of the development area either with a truck or through off-site runoff.

Potential impacts associated with the handling and movement of Native Soils will be addressed through the implementation of the dust control plan (see Section 4.3.1), and the SWPPP. The dust control measures are described in Section 4.3.1, and the requirements of the SWPPP are described in Section 4.3.3.

4.3.5.2 Management of Soil Stockpiles
Soil which is excavated within the RMP Area may need to be stockpiled before it is reused. There are three potential concerns associated with the stockpiling of soils: dust generation, erosion, and unauthorized access to the stockpiles. The risk management measures that will be implemented to control each of these impacts are described below. The management measures described below apply to soil stockpiles that are in place for a period of greater than 30 days.
4.3.5.2.1 Risk Management Guidelines to Control Dust from Soil Stockpiles

As previously described in Section 4.3.1.1, the performance standard applicable to all stockpiled soils is to prevent visible dust plumes from migrating outside the parcel boundary. Water will be used to mitigate dust generation during the creation, movement, or use of the soil stockpiles. Over-watering, which could result in excessive runoff, will be avoided. Dust palliatives or other methods of dust control may be used if water proves to be inadequate.

While stockpiles are in place, dust will be controlled either through the use of a cover, or an alternative method that provides equivalent protection. If the stockpiles are covered, the cover will consist of either anchored plastic sheeting, hydoseeding (spraying a mixture of grass seed and mulch to create a vegetative cap), or an equivalent cover. The method of covering will be determined based on anticipated time the stockpiles will be in place, weather conditions (i.e., whether favorable to hydoseeding or not), and other practical factors such as the size of the stockpiles. If, however, stockpiles are to be in place and unused for one year or greater, then the stockpile will be covered with either hydoseeding or an equivalent cover.

4.3.5.2.2 Risk Management Guidelines to Control Erosion from Stockpiles

If soil stockpiles are to be in place during the rainy season (generally October through April), they will be covered with anchored plastic sheeting, hydoseeding, or an equivalent cover to minimize erosion of the soil. The method of covering will be determined based on anticipated time the stockpiles will be in place, weather conditions (i.e., whether favorable to hydoseeding or not), and other practical factors such as the size of the stockpiles. As described above, if stockpiles are to be in place and unused for one year or greater, the stockpile will be covered with either hydoseeding or an equivalent cover. Stockpiles that are placed within the boundaries of an active construction parcel greater than one-acre in size will not require additional erosion control measures, because the SWPPP will contain specific provisions to prevent off-site sediment discharges. As previously described in Section 4.3.3, the SWPPP may require that filter fences (or equivalent BMPs) be installed around the perimeter of the
construction site to prevent off-site sediment discharge, if necessary. Filter fences (or equivalent BMPs) would likewise capture any sediments that may erode from the covered stockpile in place during the rainy season. The sediment traps that will be placed at the local stormwater intakes will also prevent sediments, including those that may result from erosion of the stockpiles, from entering the City’s storm water system. Further details of storm water management will be included in the SWPPP (described in Section 4.3.3).

If, however, soil stockpiles are to be placed outside of the boundaries of a one acre active construction site, then additional erosion control measures may be appropriate, particularly if the stockpiles will be in place during the rainy season. To further prevent stockpile erosion, a silt fence constructed of geotextile fabric and hay bales (or other appropriate BMPs) will be constructed around all stockpiles that are placed outside of a construction site and that will exist for a period of greater than six months. Such fencing shall be placed so as to be able to encompass within the fenced area the volume of soil stockpiled.

4.3.5.2.3 Risk Management Guidelines to Control Access to Stockpiles
Access to all stockpiles located within the boundaries of an active construction site will be controlled by six-foot chain link fences or equivalent with lockable gates or, in a street, other appropriate barrier that will limit unauthorized access to the construction site (see Section 4.3.6). Additionally, warning signs will be posted on the fences to inform visitors that access is prohibited. Access to any stockpiles located outside of an active construction site will be restricted by placing fences with locked gates around the stockpiles and placing appropriate warning signs on the fences and gates.

4.3.5.2.4 Inspections of Soil Stockpiles
The Owner (or some other entity, such as a contractor, designated or certified by the Owner) shall conduct quarterly inspections of the soil stockpiles to ensure the integrity of covers, berms, and silt fences (as applicable), and to verify that the fencing is in place and that gates are locked and that the warning signs are visible. In the case of washouts of soil, the soil will be replaced to the stockpile and the area will be seeded or otherwise
appropriately covered. In cases where anchored plastic sheeting is present, visible rips longer than six inches and wider than 1/4-inch will be sealed with membrane patches or replaced. The results of the quarterly inspections and a description of any material repairs undertaken will be reported to the RWQCB and the SFPDEH by January 31 of each year. The RWQCB will be notified when the soil stockpiles have been fully removed.

4.3.5.3 Reuse of Native Soil within the RMP Area

The DTSC and RWQCB have determined that the soil within the RMP Area may be moved around, managed and reused within the RMP Area without triggering hazardous waste regulatory requirements, provided that the reuse is conducted in accordance with an RMP that specifies the soil management procedures. The soil management procedures are described in Section 4.3.5. Soil that is excavated and remains within the RMP Area will be placed under buildings or other covered areas such as streets, sidewalks, parking lots, roads or landscaping as described below under Section 4.3.5.5; provided, however, that before any soil removed from portions of the RMP Area currently designated for commercial use is placed as fill in any portion of the RMP Area designated for residential use, the Owner will determine that the placement of such soil in the residential area is consistent with the human health risk Site Specific Target Levels (SSTLs) as established and approved for the RMP Area (ENVIRON 1998a) (a copy of the SSTLs is provided in Appendix E). Native Soil will not be used in the RMP Area in any manner other than described in this Section 4.3.5.3, unless the owner submits to the RWQCB supporting documentation and obtains written approval from the RWQCB.

4.3.5.4 Soil Disposal

Many of the projected construction activities in the RMP Area will require limited excavation of Native Soil to construct building pilings, elevator shafts, and other facilities. Other construction activities will require soil to be added for grading. The net balance of soil in the RMP Area is likely to be such that most excavated soil will be used for grading within the RMP Area. Based on this condition, off-site soil disposal is likely
to be limited. Any soil disposed of off-site is subject to all applicable federal and state laws and regulations.

The nature of much of the Native Soil in the RMP Area is historic fill which includes construction debris, rock, glass, wood, bricks, bay mud and may contain other debris, such as pieces of metal. For use of the soil as fill material it may be necessary to remove material greater than four inches in diameter. Material not suitable for use as fill will be profiled and disposed of in accordance with all applicable laws and regulations.

4.3.5.5 Soil for Landscaped Areas

This Section 4.3.5.5 applies to landscaped areas accessible for human use. This section does not apply to landscaped areas (such as grassy swales) enclosed with fencing, covered with grates, or similarly protected to effectively prevent human access. Materials that will be used for landscaped areas will consist of imported materials whose composition is sand, topsoil or fill that meets the prevailing commercial standards for fill used in commercial developments, or onsite material (such as Native Soil) that has been approved by the RWQCB ("Fill") in accordance with Section 4.3.5.3. The minimum depth of Fill that will be required for the landscaped areas will be between 1.0 and 1.5 feet. This depth of Fill is selected because generally accepted risk assessment protocols assume individuals with access to surface soils may be exposed to the top 1.0 to 1.5 feet of soil. Before any Fill (including in the tree wells) is placed on top of the Native Soils in the landscaped areas, a water permeable synthetic netting fabric will be placed on top of the Native Soils, and the Fill will be placed on top of this fabric. The purpose of this fabric is as a "marker" to assist in identifying whether erosion of the Fill down to the level of the Native Soils has occurred. Irrigation systems, (defined as that portion of the system between the valve and the sprinkler head) in the landscaped areas are to be placed in Fill. The fabric will be in color other than brown or black, and will have a minimum tensile strength of 50 lbs/foot.
4.3.5.6 Contingency Protocols for Identifying Unknown Areas of Contamination and/or Unknown Underground Structures

The protocols to be followed in the event that unknown areas of contamination and/or underground structures are identified during site development are described in this section. These protocols will be conducted by the Owner, Lessee, or some other entity, such as a contractor or qualified consultant, designated or certified by the Owner or Lessee.

4.3.5.6.1 Procedures for Discovery of Unknown Areas of Contamination

Site development activities may result in the identification of previously unknown areas or types of contamination. The Soil Analysis Report, prepared per the requirements described in Appendix F and described further in Section 4.3.11, will summarize the results of the analytic testing that have been conducted on the parcel prior to Site development activities. A review of the Soil Analysis Report will allow the contractor to know the types of compounds which were previously discovered on the parcel, the magnitude of the detections, and the specific locations where they were discovered. This information, and other information in the RMP Area, will guide the contractor in determining whether an encountered environmental condition is unknown and therefore will trigger contingency monitoring, as described in the succeeding paragraphs below.

Unknown conditions which may trigger contingency monitoring procedures during site development include, but are not limited to, the following:

- oily, shiny, or saturated soil or free product in previously undocumented areas;
- soil with a significant chemical or hydrocarbon-like odor in previously undocumented areas;
- significantly discolored soil that reasonably indicates a concentrated source of metals within the RMP Area other than metals naturally occurring or otherwise known to be present in the Native Soils.
Upon the discovery of one of the conditions identified above, and if the conditions on the parcel vary materially from those previously documented in the RMP Area such that they could require either alternative or additional RMP measures to protect human health or additional calculations and assessments to confirm that the existing RMP measures will be sufficiently protective, the contractor will conduct the contingency monitoring.

Contingency monitoring, if conducted, will consist of the following steps: If unknown areas of potential concentrated metals are encountered, additional analyses should be conducted for the suspected constituents to assess the potential leachability of the metals, or the RWQCB should be contacted for assistance in determining if additional sampling and potential mitigation is necessary. If the encountered materials are suspected to be volatiles, the following contingency monitoring procedures may be followed:

i) Conduct contingency monitoring by taking organic vapor readings using an organic vapor meter (OVM) or an organic vapor analyzer (OVA) to screen for the presence of fuel, oil, or solvents. If the OVM/OVA indicates that an unknown area of fuel, oil, or solvents has been detected, then the RWQCB will be notified to determine if additional sampling is appropriate prior to continuing construction in that area. Such additional characterization will not be required if the RWQCB concurs that the risk management measures currently specified in this RMP already mitigate the risk of the chemicals detected in this area. OVM or equivalent screening methods will be conducted by experienced personnel only.

ii) If an unknown area of fuel, oil or solvents has been identified, and the RWQCB has requested additional characterization, the following steps will be taken:

a) Samples will be collected from the identified area and analyzed for volatiles and/or TPH compounds, depending on the suspected type of contamination. The sampling strategy will be discussed with the RWQCB prior to the initiation of the sampling activities. Analytical results
collected from the suspected source will be compared to the health-based site-specific target levels (SSTLs) developed and approved for the RMP Area (ENVIRON 1998a) (a copy of the SSTLs is provided in Appendix E). If the levels are below the relevant health-based SSTLs, and the RWQCB concludes that the potential for ecological impacts is insignificant and does not require mitigation, then soil removal activities will not be required and the soil may be temporarily stored elsewhere pending reuse in the RMP Area. All soils will be contained during transport within the RMP Area so as to minimize the potential for spillage.

b) If the soil contains volatiles or petroleum constituents at levels that exceed the relevant health-based SSTLs, or if the RWQCB concludes that the potential for ecological impacts requires mitigation, then management measures, such as the following, will be undertaken:

1. remove soil and dispose of off-site;
2. install physical barrier, such as a vapor barrier or passive venting system, to prevent the accumulation of vapors in indoor environment;
3. stockpile soil and aerate onsite, or in a staging area as may be appropriate, in compliance with all applicable laws and regulations;
4. conduct in situ bioremediation measures;
5. implement liquid or vapor extraction measures.

The appropriateness of one of the above management measures over another will depend on many factors, such as the type of constituent detected, the size of the identified impacted area, and the estimated cost of implementing the remedy.
c) If Free Product is encountered, its areal extent and thickness will be characterized. The RWQCB will determine the appropriate response to the Free Product based on recommendations from the Owner or Lessee (or some other entity such as a contractor or qualified environmental consultant designated by the Owner or Lessee).

d) The Owner or Lessee (or some other entity such as a contractor or qualified consultant designated by the Owner or Lessee) shall report the results of the sampling activities and the proposed course of action (e.g., no action necessary, soil excavation and off-site disposal, on-site treatment and soil reuse) to the RWQCB and obtain concurrence before implementing the remedial measures. Notification of the proposed action will also be provided to SFDPH. Construction activities in the specific area where the unknown conditions were identified will resume following the completion of the additional sampling activities and the implementation of any required responses.

4.3.5.6.2 Requirements for Underground Structures

During the course of excavation and construction activities within the RMP Area, it is possible that underground storage tanks (UST), sumps, maintenance pits for rail cars or other underground structures that were not discovered during previous site searches will be discovered. For example, USTs may be identified during grading and site excavation activities by the presence of vent pipes that extend above the ground surface, product distribution piping that leads to the UST, fill pipes, back fill materials and the UST itself. Other structures might not have any features that extend above the surface, and could be unearthed when construction equipment comes into contact with them. As described below under Section 4.3.8.1, Environmental Health and Safety Guidelines, the on-site Health and Safety Officer will conduct periodic briefing meetings with all construction personnel on the procedures and reporting requirements to be undertaken when underground structures are identified. The following section outlines the measures that
govern identification and removal of UST, and appropriate measures for addressing other underground structures identified during development.

4.3.5.6.2.1 Removal Requirements for Underground Storage Tanks
Chapter 6.7 of the California Health and Safety Code contains the specific requirements for removing and remediating contamination associated with a leaking UST. While the City of San Francisco’s Local Oversight Program (LOP) is responsible for overseeing the removal of any UST, the RWQCB will maintain responsibility for overseeing environmental investigations and responses arising from releases from any UST in the RMP Area. Accordingly, in the event that a UST or appurtenant piping is discovered during construction and development of the RMP Area, then the RWQCB will be notified. Environmental investigations and responses required following removal of the UST will be conducted under the direction of the RWQCB and in accordance with the specific provisions delineated in Chapter 6.7 of the Health and Safety Code.

4.3.5.6.2.2 Procedures Governing the Identification, Investigation and Potential Removal of Other Subsurface Structures
For other subsurface structures that may have been related to former use and storage of chemicals, such as underground vaults and sumps, the following procedures should be followed to determine the proper disposition of the encountered structure.

i) The structure should be inspected to assess whether it contains any indication of chemical residuals or free liquids other than water. This determination will be made with field observations by the Owner or Lessee’s designated environmental engineer relying on visual observations, detection of chemical odors, and the results of vapor monitoring using a field OVM/OVA (as described above). If there is no indication based on visual, odor, or OVM/OVA readings, that chemicals are or were present within the vault or sump, then removal of the structure is not necessary for environmental reasons.
If a sump or vault contains liquids that appear, based on field observations (visual, odor, or OVM/OVA readings) to be chemical-containing, then the following steps shall be undertaken:

a) **Characterize the chemical-containing liquids and/or soils, and determine the appropriate response action.** Chemical-containing liquids are to be sampled for profiling purposes then properly removed and disposed under the direction of the Owner or Lessee's designated environmental engineer. The RWQCB would be notified prior to the selection of an appropriate response.

 Chemical-containing soils are to be characterized as described above under 4.3.5.6.1. The procedures used to determine the appropriate action for the soils are identical to those described above in 4.3.5.6.1.

b) **Inspect the sump or vault for cracks and holes once the liquids and/or chemical-containing soils are removed.**

1) If, based on the opinion of the Owner or Lessee's designated environmental engineer, it is determined that the structure of the sump or vault is intact, and that subsurface releases of the chemicals to the underlying soils did not likely occur, then removal of the sump or vault is not required for environmental reasons.

2) If the physical inspection of the vault or sump suggests that chemicals may have been released to the underlying soils, then:

 A) **Conduct additional environmental investigations of the underlying soils to determine whether a release, sufficient to warrant removal, has occurred.** If, based on the opinion
of the Owner or Lessee's designated environmental engineer, it is determined that a release, sufficient to warrant removal, has not occurred, then removal of the sump or vault is not required for environmental measures; or

B) Remove the sump or vault under the guidance of the Owner or Lessee's designated environmental engineer. Response to the chemicals in the soils underlying the sump or vault, if necessary, will be consistent with the procedures described above in Section 4.3.5.6.1.

4.3.6 Access Control During Construction

The potential for trespassers or visitors to gain access to construction areas and come into direct contact with potentially contaminated soils or ground water will be controlled through the implementation of the following access and perimeter security measures:

- Except in streets, fence construction site to prevent pedestrian/vehicular entry except at controlled (gated) points. Gates will be closed and locked during non-construction hours. Fencing will consist of a six foot chain link or equivalent fence unless particular safety considerations warrant the use of a higher fence.
- In streets, use a combination of K-rails or similar barriers and fences with locked gates.
- Post "No Trespassing" signs every 250 feet.

Implementation of appropriate site-specific measures as outlined above would reduce the potential for trespassers or visitors to access construction areas and to come into direct contact with soil or ground water. The access control measures will be detailed in the Environmental Health and Safety Plan (EHASP) (see Section 4.3.8) that will be developed prior to the initiation of construction activities. Compliance with the specific access control measures is the
responsibility of the Owner or Lessee (or other entity, such as a contractor designated or certified by the Owner or Lessee).

4.3.7 Protocols for Dewatering Activities

Dewatering could be initiated within the RMP Area to facilitate excavation and subsurface construction work, such as the installation of foundations, to proceed without the constraint of working in wet conditions. Uncontrolled and extensive dewatering could adversely impact ground water by drawing ground water that contains chemicals toward the dewatered area thus causing those areas to be degraded with chemicals. If it is determined that building construction necessitates the use of dewatering methods, and the dewatering activities are to occur in or around a known area of contamination (e.g., the Free Product Area) the following risk management measures will be implemented to minimize potential impacts:

- Conduct preliminary estimates of the amount of water that will need to be removed for the specific construction activity.

- Based on the location of the proposed dewatering, determine whether the volume of water that would need to be removed would result in the enlargement of an existing ground water plume, if present, or significant alterations in the ground water flow patterns in the RMP Area.

- If the estimates of the volume and location of the ground water dewatering suggest that such activities are not likely to result in the enlargement of a ground water plume, or significant alterations in the flow patterns, then simple dewatering methods, such as the those employed through the use of a sump pump, would be implemented. These simple methods would be sufficient to prevent ground water from accumulating in an open excavation or trench.

- If, based on the opinion of the Owner or Lessee’s qualified environmental engineer, dewatering is likely to result in the enlargement of an existing ground
water plume or result in significant alterations in ground water flow, such as could occur in the Free Product Area, then other engineering techniques will be employed to minimize the potential dewatering impacts. One engineering technique that could be employed involves the installation of sheetpiles. In this example, the excavations will first be ringed with sheetpiles. With proper installation, sheetpiles limit the volume of water entering the excavation and thus limit the dewatering operation's effect on surrounding ground water flow paths. Dewatering pumps installed inside the area surrounded by sheetpiles will lower the ground water level. Properly installed sheetpiles that are interlocked and driven through dense clay materials will effectively limit ground water flow through the piles and minimize the volume of water being pumped. The appropriateness of one engineering technique over another will depend on the construction specifications and other site-specific factors and will be determined by the Owner or Lessee's qualified environmental engineer on a site-by-site basis.

- All water removed during dewatering activities will be discharged in accordance with appropriate permits from the City. It is anticipated that ground water removed during dewatering activities would be discharged into the City's sewer system. Discharge of ground water into the City's sewer system would be conducted in compliance with a discharge permit issued by the San Francisco Department of Public Works (SFDPW) or the Public Utilities Commission. If direct discharge to the surface water is determined to be the appropriate method for disposal of ground water removed during dewatering, permits issued by the RWQCB under the National Pollution Discharge Elimination System would be required. Compliance with the provisions of the discharge permit is the responsibility of the Owner or Lessee (or other entity such as a contractor or qualified environmental consultant designated or certified by the Owner or Lessee). Alternatively, it may be desirable to use the water generated during dewatering activities to control dust. If the shallow ground water is to be used for
this purpose, the Owner or Lessee will obtain advanced approval from the RWQCB on a parcel-by-parcel basis.

4.3.8 Construction Worker Management Measures

During construction activities, workers that may directly contact the Native Soil and/or the ground water will conduct the work in accordance with California Occupational Safety and Health Administration (Cal/OSHA) training and worker protection rules and regulations. The types of hazards that construction workers, or other workers involved in soil disruptive activities, are most likely to encounter include identifying previously unknown structures or areas of contamination, and having direct contact with fill materials that contain inorganic constituents and petroleum compounds and ground water that contains limited quantities of inorganics and petroleum products. Cal/OSHA is the state agency that is responsible for monitoring compliance with worker health and safety laws and requirements. Compliance with standard Cal/OSHA regulations, particularly Title 8, Chapter 4, “Division of Industrial Safety”, will minimize the potential impacts associated with excavation activities, as the intent of these standards is to prepare workers for the types of hazards that are likely to be encountered during such activities. All activities conducted within the RMP Area must be in compliance with current Cal/OSHA rules and regulations, even if not expressly noted in this RMP. Further, all workers involved in subsurface activities must conduct the work in compliance with an Environmental Health and Safety Plan (EHASP). The EHASP will be an additional mechanism that will protect workers engaging in intrusive work. To achieve that goal, the EHASP will delineate the specific potential hazards associated with contact with Native Soils or ground water on the parcel under development, will specify to all workers that the fill material is likely to contain inorganic constituents, petroleum compounds and, on a parcel-by-parcel basis, other constituents, and will define the methods to be employed to minimize the hazards associated with such activities.

The minimum health and safety guidelines for all intrusive workers within the RMP Area, and a discussion of the components of the environmental health and safety plans, are provided below. Compliance with all aspects of the EHASP is the responsibility of the individuals engaged in the intrusive activities. An EHASP that meets the requirements specified in Section 4.3.8.2 will not require any further environmental approvals by any city agency, or
any state agency which participated in the designation of the RWQCB as the Administering Agency for the RMP Area under Chapter 6.65 of the California Health and Safety Code. EHASPs prepared for any construction projects will be submitted to the RWQCB as soon as reasonably practicable prior to the initiation of construction. Nothing in this RMP requires that construction workers working in the RMP Area comply with Cal/OSHA standards for Hazardous Waste Operations and Emergency Response, unless such workers are required to comply with those requirements under Cal/OSHA rules and regulations.

4.3.8.1 Environmental Health and Safety Guidelines
While this RMP establishes the minimum requirements for an EHASP, the EHASP is a stand alone document developed by the Owner or Lessee’s designated contractor or qualified environmental consultant prior to the initiation of any construction activities that would disrupt the Native Soils. It is the responsibility of the individual preparing the EHASP to verify that the components of the EHASP are consistent with current worker health and safety rules and regulations. All workers, including utility repair workers or other workers who may directly contact Native Soil or the ground water, would perform all activities in accordance with an EHASP. Consistent with the Cal/OSHA standards, an EHASP would not be required for workers such as carpenters, painters or others, who would not be performing activities that disrupt the Native Soils.

The EHASP will be designed to identify, evaluate and control safety and health with respect to the chemicals present in the soil and ground water. The EHASP will require that the on-site Health and Safety Officer conduct periodic briefing meetings (tailgate meetings) with construction personnel on the reporting requirements to be undertaken when underground structures are identified. Compliance with all aspects of the EHASP is the responsibility of the party conducting the construction activities.

4.3.8.2 Components of the Environmental Health and Safety Plans
The objectives of the EHASP are 1) to identify, evaluate and control site health and safety hazards related to the Native Soils or ground water, thereby helping to ensure the health and safety of all field personnel involved in the development activities on-site; and 2) to
inform all contractors and subcontractors of the known chemical conditions present at the site so they are able to make prudent health and safety decisions related to soils and ground water that will protect the health of the workers and the surrounding community throughout the development of the site.

The following section presents the minimum requirements for all EHASPs that will be prepared prior to construction.

General Information
This section of the EHASP will contain general information about the site, including the location of the site, the objectives of the work that the EHASP is intended to cover, and the name of the individual(s) who prepared the EHASP. This section will also contain a brief summary of the possible hazards associated with the soil and ground water conditions at the site. Based on the known conditions in the RMP Area, the principal hazards posed by the soils and ground water that construction workers will encounter will be direct contact with the inorganics present in the Native Soils and ground water.

Key Personnel/Health and Safety Responsibilities
This section of the EHASP will identify the key personnel by name, and will include identification of the Project Manager, the Site Supervisor, Site Safety Officer, and the subcontractors that will be working at the site. All workers at a given parcel who will potentially contact Native Soils or ground water will be provided a copy of the EHASP and briefed as to its contents. The health and safety responsibilities of each individual will be described in this section of the EHASP.

Facility/Site Background
Background information is provided in this section of the EHASP concerning past operations, the types of contaminants that may be encountered, and a brief description of the types of construction activities that will be conducted at the site. The description of the construction activities will focus on those activities that will result in the movement of Native Soils, and/or the potential for workers to have direct contact with the soil or the
ground water. This section will provide a general map indicating the location of the site under construction, highlighting those particular areas where soil movement activities or direct contact with ground water may occur. The types of contaminants that may be encountered during the construction activities that will be clearly identified in the EHASP include the following: inorganics (including metals and asbestos), petroleum hydrocarbons, and potentially low levels of volatiles (including methane) and semivolatiles.

Job Hazard Analysis/Hazard Mitigation

A description of the hazards associated with the specific construction activities that give rise to contact or potential contact with Native Soils or ground water is presented in this section of the EHASP. The hazards that will be discussed include, at a minimum, chemical, temperature and explosion hazards, if applicable. As part of the job hazard analysis, the EHASP will identify the chemicals likely to be encountered during the construction activities, and will present a table indicating the symptoms of exposure and the relevant regulatory exposure limits for each compound (i.e., the Cal/OSHA Permissible Exposure Limit (PEL)). The procedures to mitigate the hazards identified in the job hazard analysis are also presented in this section of the EHASP. The principal measure that will mitigate the hazards associated with chemicals present in soil and ground water will be the use of appropriate Personal Protective Equipment (PPE).

Air Monitoring Procedures

The air monitoring procedures will be detailed in the EHASP. The air monitoring that will be conducted during the site construction activities includes monitoring for both volatile constituents and respirable dust. The objectives and monitoring protocols for each are described below.

Air Monitoring for Volatiles

Air monitoring for volatile constituents will be conducted in the event that unknown areas of contamination are identified during the construction activities. The purpose of the air
monitoring as described in the EHASP is to verify that the workers are not exposed to levels of volatiles that exceed the Cal/OSHA PELs, the relevant exposure standards for workers. The presence of those constituents with the lowest OSHA PELs will dictate the level of PPE that will be required. Of the volatiles that are likely to be present within the RMP Area, the chemical with the lowest OSHA PEL is benzene, with a PEL of 1 ppm.

If previously unknown areas of contamination are identified, real time air monitoring for volatiles will be conducted using an OVM/OVA. Monitoring will be conducted within the breathing zone of the workers. Sustained 5-minute readings in the worker's breathing zone in excess of 1 ppm will require additional sampling methods to determine whether any of the chemicals with OSHA PELs of 1 ppm are present in the breathing zone. The most common chemical-specific monitoring instrument that provides real-time data is the Draeger Tube. Draeger tubes for benzene, and a few of the chlorinated solvents that also have OSHA PELs of 1 ppm (i.e., 1,2-dichloroethane, 1,1-dichloroethylene, 1,1,2,2-tetrachloroethane, and vinyl chloride) may be used to measure the concentration of vapors in the worker’s breathing zone if the sustained 5-minute readings using the OVM/OVA exceed 1 ppm above background.

The table below summarizes the protocols in effect as of 1999 for conducting the volatile monitoring, including the instrument, the frequency and duration of the air monitoring, the specific actions levels and the mitigation measures that should be taken in the event that the trigger levels are reached. All of these actions are based on protecting the health of the workers involved in the construction activities. It is the responsibility of the individual preparing the EHASP to verify that the air monitoring protocols and action levels are consistent with current worker health and safety rules and regulations.
Real-Time Air Monitoring for Volatiles

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Calibration Gas Standard</th>
<th>Frequency/Duration of Air Monitoring</th>
<th>Action Level Above Background</th>
<th>Action<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>OVM/OVA</td>
<td>100 ppm isobutylene</td>
<td>5 minutes</td>
<td>For unknown constituents:</td>
<td></td>
</tr>
<tr>
<td>Calibrated daily</td>
<td></td>
<td></td>
<td>< 1 ppm</td>
<td>Work Proceeds in Level D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 - 5 ppm</td>
<td>Don Respirator (Level C, with cartridge appropriate for the exposure)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>> 5 ppm</td>
<td>Discontinue Work. Contact Health and Safety Coordinator to determine appropriate action</td>
</tr>
<tr>
<td>Draeger Tube for</td>
<td>none required</td>
<td>Immediately following OVM/OVA reading above background in breathing zone</td>
<td>For known constituents:</td>
<td></td>
</tr>
<tr>
<td>Benzene, 1,2-DCA,</td>
<td></td>
<td></td>
<td>< OSHA PEL</td>
<td>Work Proceeds in Level D</td>
</tr>
<tr>
<td>tetrachloroethane,</td>
<td></td>
<td></td>
<td>> OSHA PEL</td>
<td>Don Respirator (Level C, with cartridge appropriate for the exposure)</td>
</tr>
<tr>
<td>vinyl chloride,</td>
<td></td>
<td></td>
<td>> 10 times OSHA PEL</td>
<td>Discontinue Work. Contact Health and Safety Coordinator to determine appropriate action</td>
</tr>
<tr>
<td>1,1-DCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Levels of Personal Protective Equipment, identified as Level D and Level C, are described in the following section.
Air Monitoring for Particulates

As described in Section 4.3.2.2, air monitoring for particulates will be conducted to demonstrate that the health and safety of the off-site populations is not being impacted by the development/construction activities. Dust monitoring, where appropriate, will verify that concentrations of PM_{10} at the site boundary do not exceed 250 \mu g/m^3.

Additional dust monitoring to verify that the workers are not exposed to nonvolatile constituents at levels greater than the chemical-specific OSHA PELs for nonvolatiles is not warranted\(^3\). If significant levels of asbestos from the serpentine-rock in the Native Soils are likely to be disturbed during the construction activities, or if other suspect material is unearthed during construction, such as pipe insulation material, then personal monitoring for asbestos may be appropriate. In that circumstance, a determination as to whether personal monitoring for asbestos is warranted will be based on the conditions specific to the parcel being developed.

Personal Protective Equipment

This section of the EHASP will identify the appropriate required PPE that will adequately protect the workers from the hazards related to contact with Native Soils or ground water that are expected to be encountered at the site. Personal Protective Equipment is selected based on the known contaminants present at a site, and the known route(s) of entry into the human body. The primary constituents present within the RMP Area that workers will be exposed to include the inorganic constituents (including metals) present in the

\(^3\) A screening-level evaluation was performed to determine the level of dust that would result in a potential exceedance of the chemical-specific OSHA PELs. The equation used to calculate the level of dust that would result in a potential exceedance of the chemical-specific OSHA PELs is as follows:

\[
\text{Dust Level} \left(\text{mg/m}^3\right) = \frac{\text{OSHA PEL} \left(\text{mg/m}^3\right)}{\text{Average Soil Concentration} \left(\text{mg/kg}\right)} \times \text{Conversion Factor} \left(10^4 \text{mg/kg}\right)
\]

Using the 95 percent Upper Confidence Limit (UCL) of the arithmetic mean to estimate the average concentration of each of the nonvolatile constituents present in the soil, the level of dust that would need to be present within the workers breathing zone over an eight-hour period in order to exceed a chemical-specific OSHA PEL is 54 \text{mg/m}^3. Given the fact that dust levels greater than 5 \text{mg/m}^3 would seriously reduce visibility, and would cause unpleasant deposits in the eyes, ears and nasal passages, it is highly unlikely that levels of dust would ever reach sustained concentrations of 5 \text{mg/m}^3. Thus, additional dust monitoring to determine whether workers are exposed to nonvolatile constituents at levels greater than the OSHA PELs is not necessary.
Native Soil. The primary exposure routes include direct contact with the Native Soils (i.e., dermal contact with soil and incidental ingestion). Based on the known conditions in the Project Area, the minimum level of PPE for intrusive workers that will come into direct contact with Native Soils or ground water will be modified Level D. For the RMP Area, modified Level D protection will include a long-sleeved shirt, long pants, gloves, and boots. If unknown areas of contamination are identified during the construction activities, and if the air monitoring for volatiles indicates that the levels of volatiles present in the breathing zone exceed the OSHA-PELs, then the worker PPE will be upgraded to Level C. Upgrading to Level C is accomplished by donning a half-face air purifying respirator with the appropriate cartridge. Certain construction activities, such as the installation of utility trenches could result in workers coming into direct contact with ground water. The contact is expected to be minimal, because Cal/OSHA regulations prohibit accumulation of water in open excavation. However, limited direct contact with ground water could occur. In the event that excavations are occurring in areas with shallow ground water, additional PPE that will minimize contact with water, including water repellent gloves and boots, will be worn by workers.

Work Zones and Site Security Measures
This section of the EHASP will identify the specific work zones of the site, and will describe the site security measures such as the placement of barricades, fencing, access control and access logs. The work zone will be defined as the area of the site where the Native Soil movement or ground water activities are being conducted. All workers within the work zone who will have direct contact with the Native Soils or ground water will perform the work in compliance with all aspects of the EHASP. The support zone will be located outside of the work zone, but within the boundaries of the site. All end-of-the-day cleanup operations, such as cleaning of the trucks wheels (for vehicles exiting the site that could be tracking Native Soils offsite), and the removal of any PPE, will occur in the support zone. If possible, the support zone will be located in close proximity to the entry and exit point of the site. The entire site will be fenced to control pedestrian
and vehicular entry, except at controlled (gated) points. The fences will remain locked during non-construction hours, and all visitors will be required to sign a visitor log.

Decontamination Measures
This section of the EHASP will describe the specific procedures that will be used to decontaminate both equipment and personnel. Decontamination measures will include cleaning the wheels of all vehicles in the support zone prior to their exiting the site, if applicable. Additionally, any contaminated PPE will be removed and placed in a designated area in the support zone prior to leaving the site.

General Safe Work Practices
This section of the EHASP will discuss the general safe work practices to be followed at the site, including entry restrictions, tailgate safety meetings, use of PPE, personal hygiene, hand washing facilities, eating and smoking restrictions, the use of warning signs and barricades, and any special precautions that may be specific to the site.

Contingency Plans/Emergency Information
This section of the EHASP will provide information regarding the procedures to be followed in the event of an emergency. The location of specific emergency equipment, such as eyewash, first aid kit and a fire extinguisher, and emergency telephone numbers and contacts are identified. A map indicating the route to the nearest hospital is also provided in this section of the EHASP. San Francisco General Hospital is the closest hospital to the RMP Area. The address and phone number for San Francisco General is as follows:

San Francisco General Hospital
1001 Potters Avenue
San Francisco, CA
(415) 206-8111
4.3.9 Quarterly Reports During Development

During periods of development on a given parcel that could result in disturbance of Native Soils or ground water, the Owner, Lessee, or their designee will prepare a quarterly status report summarizing the activities occurring on that parcel. The primary purpose of the quarterly report is to keep the regulatory agencies apprised of the conditions arising during development. The quarterly status report will summarize the dust control measures being implemented, the results of the dust monitoring program, and any notification requirements that were triggered by the dust monitoring. Additionally, the quarterly report will summarize the results of the soil stockpile inspections, the discovery of any unknown contaminants or underground structures, and all response actions undertaken to manage such conditions. The quarterly report will be submitted within 30 days after the end of the calendar quarter to the SFDPH and the RWQCB. The Owner may request that the reports be submitted on a less frequent basis, if, based on the scale of the development, the anticipated time that the development activities will be occurring, or based on experience to date the Owner believes that less frequent reporting is appropriate. Upon the expressed approval of the RWQCB, the summary status reports may be submitted on an alternative, less frequent schedule. Quarterly reports will not be required for periods of development that will last less than four weeks.

4.3.10 Documentation of the Completion of Construction Work

At the conclusion of the development activities on parcels within the RMP Area, all Native Soils remaining on that parcel will be covered by buildings, parking lots, roads, sidewalks, or landscaping with between 1.0 to 1.5 feet of Fill, as specified in Sections 4.3.5.3 and 4.3.5.5. Following development of each parcel, a completion letter documenting that the cover is in place and is in compliance with Sections 4.3.5.3 and 4.3.5.5 of the RMP will be submitted to the RWQCB and the SFDPH. The completion letter will include a figure that will identify the location of any buildings, parking lots, roads, sidewalks and landscaping on the developed parcel.
4.3.11 Framework for Complying with the Ordinance Requirements for Analyzing the Soil for Hazardous Wastes

All construction activities in the RMP Area must comply with the Ordinance Requirements for Analyzing the Soil for Hazardous Wastes in Appendix F. Prior to the initiation of site development activities, a site contractor proposing to disturb 50 cubic yards or more of soil at sites located bayward of the 1851 high tide line must conduct environmental assessments of that soil to determine if the chemicals are of sufficient concentration to cause the soil to be designated as hazardous waste, in connection with obtaining a building permit. Figure 5 presents a map of the 1851 high tide line.

As described in Appendix F, chemicals present at levels that exceed the state or federal hazardous waste levels trigger the need for the site contractor to propose measures, through a Site Mitigation Report, to address any significant health or environmental impacts, if any exist, prior to obtaining a building permit.

The framework provided below summarizes the steps that will be followed to implement and comply with the Ordinance Requirements for Analyzing the Soil for Hazardous Wastes in Appendix F. As described in the preceding sections, the overall RMP for the entire RMP Area enumerates the various site mitigation measures that will be implemented throughout the development of the RMP Area and that will mitigate potential risks to human health and the environment that could be caused by the presence of chemicals in the soils or ground water. These measures will be completed at all times during the course of development, regardless of whether a building permit is required. As described more fully below, the approved RMP will become the Site Mitigation Report referred to in the Ordinance Requirements for Analyzing the Soil for Hazardous Wastes in Appendix F and in the framework below, unless additional sampling conducted to comply with Appendix F indicates that the measures contained in the RMP are not sufficient. Unless additional measures not addressed in the RMP are necessary to mitigate risks, a separate Site Mitigation Report will not be submitted. The following steps shall be followed to implement compliance with the Ordinance Requirements for Analyzing the Soil for Hazardous Wastes:
(1) Prior to obtaining a building permit from the City for a particular development activity in a portion of the RMP Area, the Owner, Lessee, or their designee will obtain confirmation from the SFDPH that the site history and sampling completed for that portion of the RMP Area (hereafter the "Site") to date are either (a) adequate to meet the Ordinance Requirements for Analyzing the Soil for Hazardous Wastes, in Appendix F or (b) must be supplemented. In making this determination, the Owner, Lessee, or their designee will consider the analytes that had been analyzed in previous sampling events. As an example, methane sampling may be required.

(2) If the Owner, Lessee, or their designee or SFDPH determine that supplementation of the site history or sampling is required, the Owner, Lessee or their designee will supplement the site history or sampling according to the Ordinance Requirements for Analyzing the Soil for Hazardous Wastes in Appendix F.

(3) After the Owner, Lessee, or their designee and SFDPH determine that the site history and sampling are complete, the Owner, Lessee, or their designee will review the sampling results to confirm that the RMP, using the risk-based corrective action approach and health-based criteria previously adopted by the RWQCB for the RMP Area in its approval of Mission Bay risk assessments (ENVIRON 1998a) satisfies the requirements in Appendix F for a Site Mitigation Report (i.e., a qualified person is prepared to certify that the RMP will mitigate significant health and environmental risks).

(4) If the Owner, Lessee, or their designee determines that the RMP meets the criteria set forth in Step Three above, the Owner, Lessee or their designee will submit supporting documentation of that determination to the SFDPH and will provide the necessary certification required under the Ordinance Requirements for Analyzing the Soil for Hazardous Wastes presented in Appendix F.

(5) If the Owner, Lessee, or their designee determines that the RMP does not meet the criteria set forth in Step Three above, the Owner, Lessee or their designee will submit a site-specific RMP Supplement to the SFDPH and the RWQCB containing additional risk mitigation or management measures for that Site. The submittal of the site-specific RMP Supplement will be accompanied by a certification necessary under the Ordinance Requirements for Analyzing the Soil for Hazardous Wastes presented in Appendix F.
The certification shall confirm that the site-specific RMP Supplement, using the risk-based corrective action approach and the health-based criteria previously adopted for the RMP Area in approval of Mission Bay risk assessments, satisfies the requirements in Appendix F for a Site Mitigation Report (i.e., a qualified individual is prepared to certify that the site-specific RMP Supplement will mitigate significant health and environmental risks).

(6) Upon receipt of the certification specified in Steps Four or Five, the SFDPH will confirm that the Owner’s or Lessee’s certification is complete, that the applicant will have complied with the requirements of the Ordinance Requirements for Analyzing the Soil for Hazardous Wastes presented in Appendix F upon completion of the mitigation measures applicable prior to and during construction, and will forward the certification to SFDPW so that the building permit may be issued.

(7) Upon the completion of construction, the Owner, Lessee, or their designee will submit certification to the SFDPH that it has carried out those measures specified in the RMP or the Site-specific RMP Supplement (which satisfies the requirements for the Site Mitigation Report, as specified in Steps Three or Five) applicable prior to and during construction. Upon receipt of the certification, the SFDPH will provide the Owner, Lessee or their designee and the SFDPW with written notification that the Owner has complied with all requirements of the Ordinance Requirements for Analyzing the Soil for Hazardous Wastes presented in Appendix F.

4.4 Additional Management Measures Applicable to Development in the Free Product Area

A part of the RMP Area contains a measurable thickness of free petroleum product on the groundwater table ("Free Product"), resulting from the historic use of that area for bulk petroleum storage and transport by numerous oil companies. The area affected by Free Product is located in the southeast quadrant of the RMP Area. As was summarized in Section 2.0, and presented in the risk assessments, the presence of Free Product will not adversely affect the health of the future populations in the area, either before or after development. However, additional management measures may be warranted when developing in the designated Free Product Area.
(defined below) in order to minimize impacts on construction workers and the environment. These additional measures are specified below. If Free Product is encountered in an area that is not contained in the Free Product Area (as that geographic area is deemed to change over time), then the procedures in Section 4.3.5.6.1 (Procedures for Discovery of Unknown Areas of Contamination) will apply.

All measures described below would be implemented in addition to other applicable risk management measures required by this RMP. These measures only apply to work in the area designated below as the Free Product Area.

While many of these measures apply directly to the construction contractors, it is the responsibility of the Owner of the parcel under construction or the Lessee who has contracted for construction to ensure that the contractor will comply with these measures.

4.4.1 Areas Presently Known as of April 1999 to be Impacted by Free Product

The area that is presently known (as of April 1999) to be impacted, or partially impacted, by the presence of Free Product is located east of Illinois Street, near the east end of 16th Street and includes portions of the following specific parcels: P22, P23, 29 and 32, in addition to the public rights-of-way that run between these parcels, as indicated on Figure 3 (the “Free Product Area”). The Free Product Area is the subject of an investigation being conducted under the RWQCB Order 98-028 by a group of oil companies that formerly operated in the area. As the investigation conducted by the oil companies and the RWQCB proceeds, the Free Product Area may expand or contract.

Prior to beginning development, an Owner or Lessee developing a parcel in the area delineated on Figure 3 and marked as “Potentially Impacted Development Area” will determine whether the Free Product Area has changed to encompass areas different from that shown as the Free Product Area in Figure 3 by contacting the RWQCB to request updated information about the configuration of the Free Product Area. If the configuration of the area with Free Product has changed, the new configuration shall be the Free Product Area.
4.4.2 Additional Management Measures

The risk management measures outlined below will be implemented, in addition to the measures required as described in previous sections of the RMP, during any work in the Free Product Area.

i) The Owner or Lessee will verify with RWQCB that proposed construction activities will not impede the effectiveness of any ongoing or proposed RWQCB-required investigations and/or remediation by submitting development plans to the RWQCB in writing 30 days before construction begins. The RWQCB will notify the Owner or Lessee within those 30 days if the development plans will impede that effectiveness, and in that event, the RWQCB and the Owner will determine appropriate modifications to the plans. If the need for emergency repair work arises, then the notification will be provided as soon as reasonably practicable.

ii) The Owner's or Lessee's designated contractor or environmental consultant will ensure that real time air monitoring using the OVM/OVA and/or an appropriate combustible gas meter is conducted when Free Product is encountered to ensure that levels of volatiles are below OSHA standards and that methane and other gases remain below explosive levels.

iii) A contractor installing sheet piling or support piles or any other subsurface structures that extend below the water table, within 50 feet of the shoreline, will obtain the advanced opinion of the Owner's or Lessee's qualified environmental engineering consultant that such activities, as designed, will not cause the release of Free Product into San Francisco Bay.

iv) Design engineers directing construction contractors installing underground utilities (such as water, sewer, storm drain, electrical and fiber optic cables) will determine whether a change in the location or elevation of such installation is possible to avoid or minimize pipe or conduit contact with any Free Product and
which piping materials are appropriate for use in the Free Product Area over the
design-life of the utility.

v) Any excavated soils that contain free-flowing petroleum hydrocarbons (as
measured by the leaking of such liquids into the excavation within 30 minutes
after the excavated material is removed) will not be reused onsite, and the
construction contractor will arrange for the lawful disposition of such materials
outside of the RMP Area in accordance with all applicable laws given the content
of such soils.

vi) Any soils excavated from the Free Product Area that contain evidence of free-
phase petroleum hydrocarbons that are not free-flowing (i.e., they do not leak into
the excavation within 30 minutes as described in Section 4.4.2(v)) will also not be
reused on site but will be disposed of outside the RMP Area in accordance with
all applicable laws and regulations unless a qualified environmental professional
determines that such soil may be appropriately managed onsite in accordance with
the provisions of this RMP. The presence of non-free flowing, free-phase
petroleum hydrocarbons will be determined during field observations by the
presence of liquid hydrocarbon residual staining on excavation equipment (i.e.,
backhoe bucket or shovel) or by the presence of visible separate-phase petroleum
hydrocarbons in the soil.

vii) Soils excavated from the Free Product Area that contain visible evidence of
petroleum hydrocarbons will not be reused below the water table unless the
RWQCB confirms that such reuse is appropriate and will not materially impact
water quality. For purposes of this RMP, the water table includes the saturated
soil zone immediately above the water table.

viii) Areas excavated for the installation of public utilities will be backfilled with
controlled density backfill that will prevent the re-infiltration of Free Product into
the trench. An example of a controlled density backfill material for trenches that will prevent re-infiltiration of Free Product is "Bode-Flow" fill material, a flowable concrete mix. Any such material placed in public right of way areas must satisfy the City’s geotechnical requirements as set forth in City specifications.

4.5 Process for Selecting and Approving a Daycare Center and/or School Location
The Redevelopment Plans allow for the siting of daycare centers in any of the major land use districts. In addition, it is anticipated that parcel 14 will be developed as a school.

4.5.1 Daycare Centers or Schools Within Areas Currently Designated for Residential Uses
Environmental conditions in areas with land use designations allowing for residential development (as shown in Figure 2) have been evaluated and have been shown to be safe for future children and adult residential populations. Children present at a daycare center or school could be exposed to chemicals in the soils and ground water through the same exposure pathways as the child residents evaluated in the risk assessment. The primary analytical difference in analyzing exposure pathways between child residents and children present at a daycare center or school is that the residential children are assumed to be present in their home 24-hours per day, whereas the children that could be present at the daycare center or school are assumed to be present at the daycare center or school for a portion of the day. Since the portions of the RMP Area planned for residential development have been shown to be safe for on-site residents, including on-site children, any of these residential areas would also be considered safe for children that could be enrolled in the daycare center or school. Therefore, if a school or daycare center is planned on sites in any of the areas with land use designations allowing residential use, no additional analyses are necessary.
4.5.2 Daycare Center or Schools Within Areas Currently Designated for Nonresidential Uses

Since the location of daycare centers are not known, and the location of future schools is not certain, additional risk evaluations are required before schools or daycare centers can be sited in the nonresidential areas. The following approach would be implemented once the location of these uses is selected in order to assess whether or not local environmental conditions must be modified, or the location of a daycare center or school moved.

Areas designated for nonresidential development have been shown to be safe for the future human populations who would be present and in the areas. Consistent with risk assessment guidelines, the evaluation of commercial exposures assumes that the populations that could be exposed to chemicals present in soil and/or ground water would be adults. Although children would be present periodically in these areas, their exposure to chemicals would be less than the adult employees who are present for extended periods of time. However, if a daycare center or school is proposed to be constructed within an area designated for nonresidential use, then child populations would be present in the area for more extended periods of time. The following discusses the approach for determining if a nonresidential area is appropriate for child school or daycare populations.

In order to evaluate the appropriateness of a given nonresidential area for the placement of a daycare center or school, additional risk analyses would be conducted at that point in time when the specific location of the daycare center or school is selected. Once the specific location has been proposed, the chemical concentrations detected in local soil and ground water would be compared to the risk-based residential SSTLs (Appendix E). If the cumulative exposures resulting from the presence of chemicals in both the soil and ground water around the proposed location are below the residential SSTLs, then the proposed location would be appropriate for the children at the daycare center or school. If the cumulative exposures are above the residential SSTLs, then other approaches, such as the development of SSTLs specific for a child at a daycare center or a child at a school, could also be used to assess whether the use of a particular nonresidential area for either a daycare center or a school would be safe for the proposed use. Risk evaluations conducted to support the use of a particular area for either a daycare center or a school would be submitted to the RWQCB for their review and approval.
5.0 RISK MANAGEMENT MEASURES AFTER DEVELOPMENT IS COMPLETE

5.1 Introduction
The purpose of the following section is to identify the appropriate risk management measures that will be implemented to reduce long-term risks to human health and the environment from residual chemicals present in the soil and ground water after the development of parcels in the RMP Area is complete. The identification of the appropriate risk management measures was based on a comprehensive human health and ecological risk evaluation conducted to determine whether the existing environmental conditions would pose a risk to human health or the environment given the specific development plans for the RMP Area. Implementation of the management measures identified in this section is the responsibility of each Owner, Lessee, or their delegates with relevant property maintenance responsibilities.

The potential human health and ecological risks posed by the chemical constituents in the soil and ground water after development is complete are identified and discussed in Section 5.2. Section 5.3 describes the long-term risk management measures to be implemented in the RMP Area.

5.2 Identification of Potential Human Health and Ecological Impacts After Development is Complete
As described in Section 1.0, a human health and ecological risk assessment was conducted to determine whether the presence of chemicals in the soil or ground water would adversely impact human health or the environment once development of the RMP Area was complete. The populations included in the risk evaluation and the pathways through which each of the populations could be exposed to the chemicals present in the soil and ground water once development of the RMP Area is complete is presented in Appendix G. The conclusion of the risk assessment is that none of the chemicals is present at concentrations that will pose a threat to human health following the completion of the planned development. Further, with the potential exception of the Free Product Area, none of the chemicals is present at concentrations that would adversely impact the aquatic ecosystem. The potential ecological impacts associated with the
Free Product Area is the subject of a separate investigation which is being conducted in accordance with RWQCB Order No. 98-028.

5.3 Long-Term Management of Risks After Development is Complete
The purpose of the following section is to describe the long-term management measures that will be undertaken to mitigate potential long-term risks to human health and the environment after construction and development of parcels in the RMP Area is completed and in the event of further construction or development at some point in the future. The components of the long-term risk management of the RMP Area are as follows:

- Covering of the RMP Area;
- Limiting future residential development within the RMP Area to preclude single family homes with private front yards or back yards;
- Restricting the future use of ground water for domestic, industrial or irrigation purposes through recordation of the Environmental Covenant;
- Providing protocols for future subsurface activities; and
- Implementing a long-term monitoring program.

These long-term risk management measures are discussed in the following sections. Compliance with all aspects of the RMP and the specific institutional controls that must remain in place during the occupancy of the RMP Area, is the specific responsibility of the Owner, Lessee or their delegates of each development area and is described further in Section 6.0.

5.3.1 Covering of the RMP Area
After development, all Native Soils will be covered by buildings, parking lots, roads, sidewalks or landscaping with between 1.0 and 1.5 feet of Fill, unless alternative measures are approved by the RWQCB. Any future development must ensure that Native Soils are precluded from contact with humans, by using buildings, pavement or appropriate Fill for landscaping.
5.3.2 Limitations on Future Development Within the RMP Area

The parcels within the RMP Area with land use designations permitting future residential development are identified in Figure 2. As indicated, the parcels targeted for residential use in Mission Bay North and Mission Bay South area are as follows:

- **Mission Bay North**: Parcels N1, N2, N3, N3a, N4, N4a and N5
- **Mission Bay South**: Parcels 2, 3, 4, 5, 6, 7, 9, 9a, 10, 10a, 11, 12, 13 and X2

Residential development within the RMP Areas identified above will be limited to preclude single family homes with private front or back yards. If residential development were to allow individual Owners or Lessees to have access to Native Soils, then those individuals would be subject to the applicable provisions of the RMP (Section 4.0).

If the Redevelopment Plans are amended to permit residential uses in areas currently designated for nonresidential use, then further risk assessment analysis will be conducted before additional residences could be built in these areas.

5.3.3 Use of Ground Water Within the RMP Area

The ground water within the RMP Area may not be used for domestic, industrial or irrigation purposes. Ground water wells will not be installed within the RMP Area except for environmental monitoring or dewatering purposes or for RWQCB-approved remediation. Environmental monitoring wells within the RMP Area would be installed in compliance with any City guidelines and would be secured and locked to prevent unauthorized access to the ground water. The ground water within the RMP Area would remain unused unless at some point in the future an assessment of the risks from direct exposure to the ground water is conducted and subsequently if the RWQCB as the Administering Agency under AB2061 approves the use of the ground water. The provision is detailed in the Environmental Covenant recorded against the properties within the RMP Area.
5.3.4 Protocols for Future Subsurface Activities

Entities contracting with Owners or Lessees to conduct maintenance, construction, or repair work which would result in the disturbance of soils under buildings, parking lots, walkways or landscaped areas would be bound by the specific requirements set forth in Section 4.0, as appropriate. Following construction, excavation, or soil disturbance, all Native Soil will be covered as described in Section 5.3.1 so that direct contact with the Native Soils will be precluded.

5.3.5 Long-Term Monitoring Program

After the construction of the permanent improvements on any parcel in the RMP Area, the Owner (or some other entity such as a Lessee, which has by contract assumed the Owner’s responsibility for compliance with the RMP after development) shall conduct an annual physical inspection of the property that confirms the following:

- The Native Soils continue to have the cover specified in Section 5.3.1 and the cover is maintained such that Native Soils are not exposed;
- Single family homes with private front or back yards are not developed within the RMP Area in accordance with Section 5.3.2;
- Ground water is not being used for domestic, industrial or irrigation purposes, as required in Section 5.3.3 and
- To the extent that the Owner or other entity procured subsurface work, the protocols for the subsurface activities were followed, as required by Section 5.3.4.

A Reporting Checklist is presented in Appendix C, identifying each management measure and the specific reporting requirements for the different periods of development. A sample monitoring form identifying the items that should be included in the annual physical inspection is presented in Appendix C. Owners shall submit the annual inspection report to the RWQCB and the SFDPH by January 31 of each year. As indicated, the physical integrity of the cover, both the Fill in the landscaped areas and the asphalt/concrete in the other areas, will be monitored to verify that prolonged direct contact with Native Soils will not occur. For the landscaped areas,
the identification of breaches in the landscaping will be aided by the synthetic fabric that will be placed between the Native Soils and the Fill during the initial development of the landscaped areas. If during the inspections, the synthetic fabric is observed, then this will serve as an indication that the Fill has deteriorated significantly and that the Fill needs repair. Similarly, the inspections of the asphalt or concrete covered areas will focus on identifying areas where breaches in the cover, and the potential for prolonged direct contact with exposed Native Soils could occur. Descriptions of the condition of the asphalt or concrete covered areas will be noted in the inspection reports, and any necessary repairs will be conducted and documented. As the risk analyses have indicated that it is only the potential for prolonged (i.e., 25 to 30 year) daily direct contact with Native Soil that warrants management, an annual inspection/monitoring and repair program is appropriate.
6.0 REGULATORY OVERSIGHT AND ENFORCEMENT OF RMP

The purpose of this Section is to describe the regulatory oversight and enforcement mechanisms that will provide the structure for the risk management measures applicable to the RMP Area to remain in place and continue to be effective. Each Owner of any portion of the RMP Area will be notified of the RMP and its contents, and required to comply with it. This Section describes how and where the RMP will be maintained, and specifies the process through which Owners and Lessees will be notified of the RMP and informed of compliance obligations. Additionally, this Section identifies the monitoring/reporting requirements and enforcement procedures that can be exercised by the RWQCB to ensure compliance with all provisions of the RMP.

6.1.1 Public Repositories of the RMP

The RMP for the entire RMP Area shall be maintained in two locations:

- With the Administrative Clerk of the Regional Water Quality Control Board for the San Francisco Bay Region in a file labeled “Mission Bay Risk Management Plan Area” and maintained in the public record room for active RWQCB oversight sites. This file shall be available for public review during the normal business hours in the public record room.

- With the SFDPH for the City and County of San Francisco in a file labeled “Mission Bay Risk Management Plan Area” and available for public review during the normal business hours of the Department of Public Health.

Each page of the RMP approved by the RWQCB shall be dated with the month and year that the RWQCB has approved the RMP or its modifications. A page shall be added to the front of each copy of the RMP when modifications are inserted, indicating the dates and pages of the substitutions.
6.1.2 Contents of RMP Area File

Both the RWQCB and SFDPH will maintain an index for all RMP Area technical reports and data submitted. It shall include any technical reports submitted to the RWQCB or SFDPH for the RMP Area, including without limitation, any reports or documents submitted to comply with the Ordinance Requirements for Analyzing the Soil for Hazardous Wastes in Appendix F. These files shall be available for public review during normal business hours.

6.2 Modifications to the RMP

It is anticipated that the provisions of the RMP may need to be amended from time to time. Examples of circumstances that may require RMP modifications include but are not limited to:

- When currently unanticipated conditions are encountered during construction, the response to which is not specified in this RMP and it is believed that the conditions may recur;
- When the manner of construction used for particular buildings in the RMP Area is materially changed and necessitates different safeguards; or
- Evolving construction or landscape technologies or techniques allow the long-term management of risks identified in Section 5.0 to be accomplished in a different but equally protective ways.

This list is not exhaustive but merely representative of the kinds of changes that may trigger the need for appropriate modifications over the life of this project.

A proposed RMP modification will not be presented to the RWQCB unless the following entities concur in proposing the amendment: (i) the current Owner of the affected parcel; and (ii) Catellus, the City and/or the Redevelopment Agency, and the Regents of the University of California, to the extent that the proposed RMP modification affects RMP compliance obligations that are imposed upon them in their agreements with each other. All modifications proposed to the RWQCB must include a certification from the Owner that the Owner has reviewed all relevant technical reports and data on file with both the RWQCB and SFDPH, and that the modification complies with the FSEIR.
When such affected parties concur upon a proposed modification to the RMP, they will jointly present such proposed modifications to the RWQCB for their approval. The RWQCB will review the proposed changes, request any additional background information if needed, and issue a decision regarding the proposal within 45 days of receipt of a fully complete application supporting the requested modification. The decision of the RWQCB regarding the request for modification shall be considered final and shall be accepted by all involved parties except that any aggrieved party can request that a RWQCB decision which is contrary to their interests be reviewed by the RWQCB itself at a regularly scheduled public hearing. Once the RWQCB has approved the RMP modifications, the RMP changes will be filed in the RWQCB public copy and with the Department of Public Health. The procedures for modification and review of the RMP proposed modifications set forth in this Section 6.0 are in addition to, and not in lieu of, any procedures for advance review, notice, approval and dispute resolution set forth in private contracts between Catellus Development Corporation, UCSF, the City, and the Redevelopment Agency.

6.3 Notification of Owners and Lessees and Identification of Compliance Obligations

An Environmental Covenant is recorded in the Official Records of the City and County of San Francisco against each parcel in the RMP Area and runs with the real property under California Civil Code 1471. The Environmental Covenant references the RMP and requires compliance with its provisions.

Because the Environmental Covenant is recorded, the Covenant will be provided to the Owners in the RMP Area, who will also become bound to comply, as a matter of law, with the Environmental Covenant. The Owners who have executed or become bound by the Environmental Covenant have also agreed by its terms to provide a copy of the RMP governing the parcel being transferred to applicable transferees.

The Environmental Covenant provides, among other things, that:

- Each Owner or Lessee will be deemed by their purchase, leasing or exclusive possession of the parcel within the RMP Area to be in compliance with the Environmental Covenant and the RMP. Recordation of the Environmental
Covenant shall be binding on all Owners and Lessees, regardless of whether a
copy of the Environmental Covenant has been attached to or incorporated into any
given deed or lease.

- In all future leases, licenses, permits or other agreements between, on the one
hand, an Owner or Lessee, and, on the other hand, another entity, which
authorizes such entity to undertake or to engage in subject to one or more
requirements in this RMP, the Owner or Lessee will provide a copy of the RMP
or its relevant provisions to such parties prior to the execution of the agreements
and ensure that the agreements contain covenants that (i) such entity will comply
with the RMP (to the extent the RMP applies to such parties' activities); (ii) that
such entity will obligate other entities with which it contracts for construction,
property maintenance or other activities that may disturb Native Soil or ground
water to comply with the applicable provisions of the RMP; and, (iii) such entity
(and the entities with which it so contracts) will refrain from interfering with the
title Owners' or Lessees' compliance with the RMP.

- In all agreements between an Owner and another entity provided for access to an
affected parcel for the purpose of environmental mitigation, monitoring or
remediation ("Environmental Response") by such entity, the Owner will provide
the entity with a copy of the RMP prior to execution of the agreement and ensure
that the agreements contain covenants by the entity that the entity will (i) comply
with the RMP (to the extent the RMP applies to the entity's activities); and (ii)
obligate any person or company with which it contracts for Environmental
Response that may disturb Native Soil or ground water to comply with the
applicable provisions of the RMP.

6.4 Monitoring and Reporting

There are several junctures during the development of the RMP Area where this RMP, by its
terms, requires monitoring and/or reporting. The monitoring and reporting requirements prior to,
during, and after development are identified below. A Reporting Checklist, identifying each
management measure and the specific reporting requirements for the different periods of development, is presented in Appendix C.

6.4.1 Prior to Commencement of Development

The Owner or Lessee (or some other entity, such as a property management company, designated or certified by the Owner or Lessee) shall follow the pre-development monitoring requirements described in Sections 3.2(v) and 3.2(vi). Appendix C presents a checklist summarizing the reporting requirements for parcels prior to the initiation of development.

6.4.2 During Development

- Prior to the initiation of construction activities within the Free Product Area, the Owner or Lessee will notify the RWQCB as described in Section 4.4.2(i).
- Prior to the commencement of development, the Owner or Lessee shall submit the dust monitoring notification to the RWQCB and the SFDPH, as described in Section 4.3.1.
- The Owner or Lessee (or some other entity, such as a contractor, designated or certified by the Owner or Lessee) shall document implementation of the dust control measures, as described in Section 4.3.1.2 and shall comply with the requirements of the Dust Monitoring Program, set forth in Section 4.3.2.2.
 Further, the Owner or Lessee (or some other entity, such as a contractor, designated or certified by the Owner or Lessee) shall comply with the specific reporting requirements of the Dust Monitoring Program, as described in Section 4.3.2.2.7.
- The Owner or Lessee (or some other entity, such as a contractor, designated or certified by the Owner or Lessee) must prepare, prior to certain types of construction activities, a Storm Water Pollution Prevention Plan (SWPPP), (as described in Section 4.3.3), must submit the SWPPP to the RWQCB, and must comply with the provisions detailed in the SWPPP.
- The Owner or Lessee (or some other entity, such as a contractor, designated or certified by the Owner or Lessee) shall conduct quarterly inspections of any soil stockpiles as described in Section 4.3.5.2.4.

- The Owner or Lessee (or some other entity, such as a contractor, designated or certified by the Owner or Lessee) will provide any notification required under state, federal or local law and will provide notice of such conditions to the RWQCB as the Administering Agency for the RMP Area whenever the construction contractor encounters: (i) unknown areas of contamination in the soil or ground water, per the notification requirements described in Section 4.3.5.6.1(i) and 4.3.5.6.1(ii)(d); (ii) any other unanticipated environmental condition, the response to which is not specified in the RMP; (iii) other indications of a release of hazardous substances or hazardous materials which is required by state or federal law to be reported to a state environmental agency; (iv) a UST, per the notification requirements described in Section 4.3.5.6.2.1; or (v) any underground structure such as a sump, vault, or other subsurface structure if it is determined that the structure was related to former use and storage of chemicals and/or releases to the underlying soils occurred, as described in Sections 4.3.5.6.2.2 (ii)(a) and 4.3.5.6.2.2(ii)(b)(2).

- The Owner or Lessee’s designated contractor will submit the EHASP to the RWQCB prior to the initiation of construction if the construction project is projected to last more than four weeks, as described in Section 4.3.8.

- The Owner or Lessee (or some other entity, such as a contractor, designated or certified by the Owner or Lessee) will prepare the quarterly status report, as described in Section 4.3.9.

- The Owner or Lessee (or some other entity, such as a contractor, designated or certified by the Owner or Lessee) will prepare a completion letter, as described in Section 4.3.10.

Appendix C presents a checklist summarizing the reporting requirements for parcels during the period of development.
6.4.3 After Development is Complete

After the construction of the permanent improvements on any parcel in the RMP Area, the Owner or Lessee (or some other entity such as a long-term lessee, which has by contract assumed the Owner’s or Lessee’s responsibility for compliance with the RMP after development) shall follow the long-term monitoring program described in Section 5.3.5. Appendix C presents a checklist summarizing the reporting requirements for parcels after development of the parcel is complete.

6.5 Enforcement Authority

Responsibility for determining whether RMP requirements have been breached and, if so, the initiation of any enforcement action where it is appropriate shall rest with the RWQCB. The information provided to the RWQCB, as set forth in Section 6.4 will apprise the RWQCB of the status of RMP compliance for the RMP Area. Upon learning that a particular parcel is not RMP compliant, the RWQCB has the authority to enforce the provisions of the Porter Cologne Water Quality Control Law, Sections 13000, et seq. of the Water Code, against certain entities, including those who have caused or permitted the discharge of pollutants to land where it may create a nuisance. Additionally, as the stated beneficiary of the Environmental Covenant, the RWQCB may enforce the RMP restrictions through a civil action brought against an Owner or a Lessee which is not in compliance with the RMP.

The RWQCB’s enforcement activity is separate from and in addition to the enforcement authority retained by the City in ensuring compliance with Appendix F requirements during construction.
7.0 REFERENCES

Regional Water Quality Control Board (RWQCB). 1998a. *Information on Erosion and Sediment controls for Construction Projects: A Guidebook (Note: date in manual is not listed).*

Regional Water Quality Control Board (RWQCB). 1998b. *Erosion and Sediment Control Field Manual (Note: date in manual is not listed).*
FIGURES
Fig 4. Site Conditions Where Dust Monitoring is Required:
Relationship Between Length of Site and Distance to Nearest Receptor Where Annual Average Dust Concentrations Equal 250 µg/m³

Dust Monitoring Not Required

Dust Monitoring Required
APPENDIX A

Analytical Results for Soil and Ground Water
Appendix A
Analytical Results for Soil and Ground Water

LIST OF TABLES

Table A-1: Summary of Detected Compounds in Soil, Mission Bay North
Table A-2: Summary of Detected Compounds in Ground Water, Mission Bay North
Table A-3: Detections of Pesticides and PCBs in Soil, Mission Bay South
Table A-4: Detections of PAHs in Soil, Mission Bay South
Table A-5: Detections of other Semivolatile Organic Compounds in Soil and Ground Water, Mission Bay South
Table A-6: Detections of PAHs in Ground Water, Mission Bay South
Table A-7: Detections of Volatile Organic Compounds in soil, Mission Bay South
Table A-8: Detections of Volatile Organic Compounds in Ground Water, Mission Bay South
Table A-9: Detections of Metals in Soil, Mission Bay South
Table A-10: Detections of Metals in Ground water, Mission Bay South
Table A-11: Detections of Total Petroleum Hydrocarbons in Soil, Mission Bay South
Table A-12: Detections of Total Petroleum Hydrocarbons in Ground Water, Mission Bay South
Table A-13: Summary of pH in Soil and Ground Water, Mission Bay South
Table A-14: Detections of Asbestos in Soil, Mission Bay South
<table>
<thead>
<tr>
<th>ANALYTE</th>
<th>Units</th>
<th>MW-1</th>
<th>MW-2</th>
<th>MW-3</th>
<th>MW-4</th>
<th>MW-5</th>
<th>MW-6</th>
<th>MW-7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2.0-3</td>
<td>5.0-6.0</td>
<td>1.0-2.0</td>
<td>2.5-3.5</td>
<td>1.5-2.5</td>
<td>5.5-6.5</td>
<td>1.0-2.5</td>
</tr>
<tr>
<td>Volatile Organic Compounds: EPA 8260</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>µg/kg</td>
<td>< 20</td>
<td>< 20</td>
<td>< 20</td>
<td>< 20</td>
<td>25</td>
<td>< 20</td>
<td>< 20</td>
</tr>
<tr>
<td>Petroleum Hydrocarbons: EPA 8015SM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diesel</td>
<td>mg/kg</td>
<td>80 YH</td>
<td>1 YH</td>
<td>9.9 YH</td>
<td>9.2 YH</td>
<td>12 YH</td>
<td>2.5 YH</td>
<td>240 YH</td>
</tr>
<tr>
<td>Motor Oil</td>
<td>mg/kg</td>
<td>230</td>
<td>< 5</td>
<td>59 H1</td>
<td>110 H1</td>
<td>65 H1</td>
<td>9 Y</td>
<td>410</td>
</tr>
<tr>
<td>Non-Volatile Organic Compounds: EPA 8220</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrene</td>
<td>µg/kg</td>
<td>< 330</td>
<td>< 330</td>
<td>< 330</td>
<td>< 330</td>
<td>< 330</td>
<td>2,200</td>
<td>< 330</td>
</tr>
<tr>
<td>Benzo[a]anthracene</td>
<td>µg/kg</td>
<td>< 330</td>
<td>< 330</td>
<td>< 330</td>
<td>< 330</td>
<td>< 330</td>
<td>1,100</td>
<td>< 330</td>
</tr>
<tr>
<td>Chrysene</td>
<td>µg/kg</td>
<td>< 330</td>
<td>< 330</td>
<td>< 330</td>
<td>< 330</td>
<td>< 330</td>
<td>1,200</td>
<td>< 330</td>
</tr>
<tr>
<td>Benzo[b]fluoranthene</td>
<td>µg/kg</td>
<td>< 330</td>
<td>< 330</td>
<td>< 330</td>
<td>< 330</td>
<td>< 330</td>
<td>950</td>
<td>< 330</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>µg/kg</td>
<td>< 330</td>
<td>< 330</td>
<td>< 330</td>
<td>< 330</td>
<td>< 330</td>
<td>300 J</td>
<td>< 330</td>
</tr>
</tbody>
</table>
TABLE A-1: SUMMARY OF DETECTED COMPOUNDS IN SOIL

Mission Bay North
Cayucos Mission Bay
San Francisco, California

<table>
<thead>
<tr>
<th>Title 22 Metals - EPA Methods 6010/7470</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony</td>
<td>mg/kg</td>
<td>7.0</td>
<td>< 2.9</td>
<td>< 2.8</td>
<td>< 2.9</td>
<td>< 3.0</td>
<td>< 2.8</td>
<td>< 2.9</td>
<td>< 3.0</td>
<td>< 2.9</td>
<td>< 3.0</td>
<td>< 2.9</td>
<td>< 3.0</td>
</tr>
<tr>
<td>Arsenic</td>
<td>mg/kg</td>
<td>5.9</td>
<td>2.3</td>
<td>5.3</td>
<td>9.0</td>
<td>5.2</td>
<td>6.1</td>
<td>4.2</td>
<td>1.0</td>
<td>5.3</td>
<td>3.8</td>
<td>7.2</td>
<td>4.8</td>
</tr>
<tr>
<td>Barium</td>
<td>mg/kg</td>
<td>63</td>
<td>15</td>
<td>120</td>
<td>190</td>
<td>41</td>
<td>180</td>
<td>20</td>
<td>58</td>
<td>200</td>
<td>140</td>
<td>32</td>
<td>130</td>
</tr>
<tr>
<td>Beryllium</td>
<td>mg/kg</td>
<td>< 0.096</td>
<td>0.23</td>
<td>0.25</td>
<td>0.43</td>
<td>0.11</td>
<td>< 0.098</td>
<td>0.23</td>
<td>0.53</td>
<td>0.25</td>
<td>0.099</td>
<td>0.23</td>
<td>0.13</td>
</tr>
<tr>
<td>Cadmium</td>
<td>mg/kg</td>
<td>44</td>
<td>25</td>
<td>54</td>
<td>40</td>
<td>61</td>
<td>21</td>
<td>21</td>
<td>25</td>
<td>31</td>
<td>32</td>
<td>29</td>
<td>24</td>
</tr>
<tr>
<td>Cobalt</td>
<td>mg/kg</td>
<td>9.3</td>
<td>3.8</td>
<td>11</td>
<td>6.4</td>
<td>3</td>
<td>4.7</td>
<td>6.3</td>
<td>3</td>
<td>7.7</td>
<td>1.5</td>
<td>9.8</td>
<td>3.9</td>
</tr>
<tr>
<td>Copper</td>
<td>mg/kg</td>
<td>220</td>
<td>0.28</td>
<td>37</td>
<td>60</td>
<td>20</td>
<td>35</td>
<td>25</td>
<td>0.49</td>
<td>30</td>
<td>37</td>
<td>81</td>
<td>8.3</td>
</tr>
<tr>
<td>Lead</td>
<td>mg/kg</td>
<td>260</td>
<td>9.8</td>
<td>170</td>
<td>270</td>
<td>8.0</td>
<td>150</td>
<td>140</td>
<td>3.8</td>
<td>150</td>
<td>12</td>
<td>250</td>
<td>36</td>
</tr>
<tr>
<td>Mercury</td>
<td>mg/kg</td>
<td>1.2</td>
<td>< 0.10</td>
<td>0.14</td>
<td>1.7</td>
<td>0.35</td>
<td>0.91</td>
<td>1.8</td>
<td>< 0.025</td>
<td>0.35</td>
<td>< 0.01</td>
<td>0.98</td>
<td>0.92</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>mg/kg</td>
<td>< 0.97</td>
<td>< 0.96</td>
<td>< 0.55</td>
<td>< 0.95</td>
<td>< 0.99</td>
<td>< 1.0</td>
<td>< 0.08</td>
<td>< 0.86</td>
<td>< 1.0</td>
<td>< 0.97</td>
<td>< 0.56</td>
<td>< 1.0</td>
</tr>
<tr>
<td>Nickel</td>
<td>mg/kg</td>
<td>51</td>
<td>17</td>
<td>100</td>
<td>24</td>
<td>56</td>
<td>16</td>
<td>24</td>
<td>12</td>
<td>29</td>
<td>36</td>
<td>31</td>
<td>18</td>
</tr>
<tr>
<td>Selenium</td>
<td>mg/kg</td>
<td>0.18</td>
<td>0.07</td>
<td>2.2</td>
<td>1.6</td>
<td>2.9</td>
<td>1.5</td>
<td>0.93</td>
<td>0.61</td>
<td>2.2</td>
<td>3</td>
<td>1.4</td>
<td>0.45</td>
</tr>
<tr>
<td>Silver</td>
<td>mg/kg</td>
<td>< 0.48</td>
<td>< 0.48</td>
<td>< 0.47</td>
<td>< 0.49</td>
<td>< 0.49</td>
<td>< 0.47</td>
<td>< 0.50</td>
<td>< 0.49</td>
<td>< 0.48</td>
<td>< 0.50</td>
<td>0.58</td>
<td>< 0.48</td>
</tr>
<tr>
<td>Thallium</td>
<td>mg/kg</td>
<td>1.1</td>
<td>< 0.24</td>
<td>< 0.24</td>
<td>< 0.24</td>
<td>1.0</td>
<td>< 0.24</td>
<td>0.54</td>
<td>0.50</td>
<td>1.2</td>
<td>3.1</td>
<td>0.61</td>
<td>0.51</td>
</tr>
<tr>
<td>Vanadium</td>
<td>mg/kg</td>
<td>33</td>
<td>19</td>
<td>34</td>
<td>27</td>
<td>36</td>
<td>25</td>
<td>20</td>
<td>35</td>
<td>52</td>
<td>28</td>
<td>18</td>
<td>39</td>
</tr>
<tr>
<td>Zinc</td>
<td>mg/kg</td>
<td>220</td>
<td>0.16</td>
<td>120</td>
<td>110</td>
<td>49</td>
<td>69</td>
<td>260</td>
<td>21</td>
<td>78</td>
<td>50</td>
<td>180</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Perfluorinated Polychlorinated Compounds - EPA 5080</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4,4'-DDE</td>
<td>µg/kg</td>
<td>< 6.0</td>
<td>< 3.0</td>
<td>< 6.0</td>
<td>< 3.0</td>
<td>< 6.0</td>
<td>< 120</td>
<td>< 240</td>
</tr>
<tr>
<td>4,4'-DDD</td>
<td>µg/kg</td>
<td>< 6.0</td>
<td>< 18</td>
<td>< 30</td>
<td>< 60</td>
<td>< 60</td>
<td>< 120</td>
<td>< 240</td>
</tr>
<tr>
<td>Antrach-1254</td>
<td>µg/kg</td>
<td>< 12</td>
<td>< 240</td>
</tr>
</tbody>
</table>

<p>| Other Analyses/General Chemistry | | | | | | | | | | | | | | |
|----------------------------------)|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Fluoride | mg/kg | < 2.5 |
| Chromium VI | mg/kg | < 0.05 | < 0.17 | < 0.05 | < 0.05 | < 0.05 | < 0.16 | < 0.05 |
| Asbestos | % | ND | 1-5% (1) |
| pH | pH | 7.5 | 8.1 | 9.1 | 8.1 | 8.7 | 8.9 | 7.6 | 7.0 | 9.1 | 8.6 | 7.8 | 9.0 | 7.7 |
| Methane | ppmv | < 5.00 |</p>
<table>
<thead>
<tr>
<th>ANALYTE</th>
<th>Units</th>
<th>MW-8</th>
<th>MW-9</th>
<th>MW-10</th>
<th>MW-11</th>
<th>MW-12</th>
<th>MW-13</th>
<th>MW-14</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2.5 - 3.5'</td>
<td>4.0 - 5.0'</td>
<td>1.0 - 2.0'</td>
<td>2.5 - 3.5'</td>
<td>1.0 - 2.0'</td>
<td>4.0 - 5.0'</td>
<td>0.5 - 1.5'</td>
</tr>
<tr>
<td>Volatile Organic Compounds</td>
<td>EPA 8260</td>
<td>(EPA 8260 list of compounds)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>µg/kg</td>
<td>0.8</td>
<td>48</td>
<td>45</td>
<td>< 20</td>
<td>< 20</td>
<td>< 20</td>
<td>< 20</td>
</tr>
<tr>
<td>Petroleum Hydrocarbons</td>
<td>EPA 8015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diesel</td>
<td>µg/kg</td>
<td>50 YH</td>
<td>93 YH</td>
<td>69 YH</td>
<td>138 YH</td>
<td>15 YH</td>
<td>2.7 YH</td>
<td>20 YH</td>
</tr>
<tr>
<td>Motor Oil</td>
<td>µg/kg</td>
<td>320 Y</td>
<td>130 Y</td>
<td>220 Y</td>
<td>890 Y</td>
<td>71 Y</td>
<td>25</td>
<td>80 H</td>
</tr>
<tr>
<td>Semi-Volatile Organic Compounds</td>
<td>EPA 8270</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE A-1: SUMMARY OF DETECTED COMPOUNDS IN SOIL

Mission Bay North

Catellus Mission Bay

San Francisco, California

<table>
<thead>
<tr>
<th>Title 22 Metals - EPA Methods 6010/7479</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony mg/kg</td>
<td>< 3.0</td>
</tr>
<tr>
<td>Arsenic mg/kg</td>
<td>7.2</td>
</tr>
<tr>
<td>Barium mg/kg</td>
<td>300</td>
</tr>
<tr>
<td>Beryllium mg/kg</td>
<td>0.32</td>
</tr>
<tr>
<td>Cadmium mg/kg</td>
<td>1.0</td>
</tr>
<tr>
<td>Chromium mg/kg</td>
<td>30</td>
</tr>
<tr>
<td>Copper mg/kg</td>
<td>7.2</td>
</tr>
<tr>
<td>Lead mg/kg</td>
<td>75</td>
</tr>
<tr>
<td>Mercury mg/kg</td>
<td>3.6</td>
</tr>
<tr>
<td>Molybdenum mg/kg</td>
<td>< 1.0</td>
</tr>
<tr>
<td>Nickel mg/kg</td>
<td>27</td>
</tr>
<tr>
<td>Selenium mg/kg</td>
<td>1.0</td>
</tr>
<tr>
<td>Silver mg/kg</td>
<td>0.60</td>
</tr>
<tr>
<td>Thallium mg/kg</td>
<td>1.5</td>
</tr>
<tr>
<td>Vanadium mg/kg</td>
<td>30</td>
</tr>
<tr>
<td>Zinc mg/kg</td>
<td>200</td>
</tr>
</tbody>
</table>

Pesticides and PCBs - EPA 6800

4,4'-DDD	µg/kg	< 240	< 6.0	< 6.0	7.3	< 120	< 6.0	< 6.0	< 6.0	< 6.0	< 6.0	< 6.0	< 6.0	< 6.0
4,4'-DDE	µg/kg	< 240	< 6.0	< 6.0	< 120	< 6.0	< 6.0	< 6.0	< 6.0	< 6.0	< 6.0	< 6.0	< 6.0	< 6.0
Aroclor-1254	µg/kg	< 480	< 12	< 12	< 12	240	< 12	< 12	< 12	< 12	< 12	< 12	< 12	< 12

Other Analytes/General Chemistry

Fluoride mg/kg	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	2.6	< 2.5	2.9	3.1	< 2.5	< 2.5	3.3	< 2.5	
Chromium VI mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Asbestos %	ND														
pH	7.4	7.4	7.4	7.5	8.3	8.3	8.4	7.9	8.6	8.1	7.6	8.3	7.7		
Methane ppmv	< 5.00	11	< 5.00	5.7	5.2	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00
TABLE A-I: SUMMARY OF DETECTED COMPOUNDS IN SOIL
Mission Bay North
Catellus Mission Bay
San Francisco, California

NOTES:
"-" indicates not analyzed.
"< SL" indicates not detected above laboratory detection limit.
Y - Sample exhibits fuel pattern, which does not resemble standard; see Appendix B for discussion.
H - Heavier hydrocarbons than indicated standard; see Appendix B for discussion.
L - Lighter hydrocarbons than indicated standard; see Appendix B for discussion.
E - Estimated. High sample dilution results in elevated detection limits; see Appendix B for discussion.
ND = Not detected.
(1) Clay soils affected.
For a complete listing of chemical results in soil, see Appendix B.
<table>
<thead>
<tr>
<th>ANALYTE</th>
<th>MW-1</th>
<th>MW-2</th>
<th>MW-3</th>
<th>MW-4</th>
<th>MW-5</th>
<th>(DUP)</th>
<th>MW-6</th>
<th>MW-7</th>
<th>MW-8</th>
<th>MW-9</th>
<th>MW-10</th>
<th>MW-11</th>
<th>MW-12</th>
<th>MW-13</th>
<th>MW-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile Organic Compounds - EPA 8260</td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>< 1.0</td>
<td>< 1.0</td>
<td>< 1.0</td>
<td>< 1.0</td>
<td>< 1.0</td>
<td>14</td>
<td>7.4</td>
<td>< 1.0</td>
<td>2.5</td>
<td>< 1.0</td>
<td>< 1.0</td>
<td>1.6</td>
<td>1.1</td>
<td>< 1.0</td>
<td>< 1.0</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>< 1.0</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>< 1.0</td>
</tr>
<tr>
<td>Chloroform</td>
<td>< 1.0</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>< 1.0</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>< 1.0</td>
</tr>
<tr>
<td>Toluene</td>
<td>< 1.0</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>< 1.0</td>
</tr>
<tr>
<td>m,p-Xylenes</td>
<td>< 1.0</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>< 1.0</td>
</tr>
<tr>
<td>Petroleum Hydrocarbons - EPA 8015M</td>
<td></td>
</tr>
<tr>
<td>Gasoline</td>
<td>< 50</td>
</tr>
<tr>
<td>Diesel</td>
<td>µg/L</td>
<td>86 YH</td>
<td>359 YH</td>
<td>850 YH</td>
<td>920 Y</td>
<td>550</td>
<td>330</td>
<td>55 YH</td>
<td>170 YH</td>
<td>150 YH</td>
<td>1,200 YH</td>
<td>280 Y</td>
<td>48,000</td>
<td>110 Y</td>
<td>93 Y</td>
</tr>
<tr>
<td>Motor Oil</td>
<td>µg/L</td>
<td>< 300</td>
<td>670 Y</td>
<td>1,760 Y</td>
<td>< 300</td>
<td>< 300</td>
<td>< 300</td>
<td>< 300</td>
<td>< 300</td>
<td>< 300</td>
<td>3,600</td>
<td>540 Y</td>
<td>7,100 Y</td>
<td>< 300</td>
<td>< 300</td>
</tr>
<tr>
<td>Semi-Volatile Organic Compounds - EPA 8270</td>
<td></td>
</tr>
<tr>
<td>Naphthalene</td>
<td>< 9.4</td>
<td>< 9.4</td>
<td>< 9.7</td>
<td>< 9.4</td>
<td>< 9.7</td>
<td>< 9.6</td>
<td>< 9.4</td>
<td>< 9.4</td>
<td>< 9.4</td>
<td>< 9.4</td>
<td>< 9.8</td>
<td>< 9.4</td>
<td>5,500</td>
<td>< 9.5</td>
<td>< 9.4</td>
</tr>
<tr>
<td>2-Methylnaphthalene</td>
<td>< 9.4</td>
<td>< 9.4</td>
<td>< 9.7</td>
<td>< 9.4</td>
<td>< 9.7</td>
<td>< 9.6</td>
<td>< 9.4</td>
<td>< 9.4</td>
<td>< 9.4</td>
<td>< 9.4</td>
<td>< 9.8</td>
<td>< 9.4</td>
<td>1,400</td>
<td>< 9.5</td>
<td>< 9.4</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>< 9.4</td>
<td>< 9.4</td>
<td>< 9.7</td>
<td>< 9.4</td>
<td>< 9.7</td>
<td>< 9.6</td>
<td>< 9.4</td>
<td>< 9.4</td>
<td>< 9.4</td>
<td>< 9.4</td>
<td>< 9.8</td>
<td>< 9.4</td>
<td>450 J</td>
<td>< 9.5</td>
<td>< 9.4</td>
</tr>
<tr>
<td>Dibenzothiophen</td>
<td>< 9.4</td>
<td>< 9.4</td>
<td>< 9.7</td>
<td>< 9.4</td>
<td>< 9.7</td>
<td>< 9.6</td>
<td>< 9.4</td>
<td>< 9.4</td>
<td>< 9.4</td>
<td>< 9.4</td>
<td>< 9.8</td>
<td>< 9.4</td>
<td>520</td>
<td>< 9.5</td>
<td>< 9.4</td>
</tr>
<tr>
<td>Fluorene</td>
<td>< 9.4</td>
<td>< 9.4</td>
<td>< 9.7</td>
<td>< 9.4</td>
<td>< 9.7</td>
<td>< 9.6</td>
<td>< 9.4</td>
<td>< 9.4</td>
<td>< 9.4</td>
<td>< 9.4</td>
<td>< 9.8</td>
<td>< 9.4</td>
<td>690</td>
<td>< 9.5</td>
<td>< 9.4</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>< 9.4</td>
<td>< 9.4</td>
<td>< 9.7</td>
<td>< 9.4</td>
<td>< 9.7</td>
<td>< 9.6</td>
<td>< 9.4</td>
<td>< 9.4</td>
<td>< 9.4</td>
<td>< 9.4</td>
<td>< 9.8</td>
<td>< 9.4</td>
<td>12</td>
<td>< 9.4</td>
<td>< 9.5</td>
</tr>
<tr>
<td>bis(2-Ethylhexyl)phthalate</td>
<td>< 9.4</td>
<td>< 9.4</td>
<td>< 9.7</td>
<td>< 9.4</td>
<td>< 9.7</td>
<td>< 9.6</td>
<td>< 9.4</td>
<td>< 9.4</td>
<td>< 9.4</td>
<td>< 9.4</td>
<td>< 500</td>
<td>< 9.5</td>
<td>< 9.5</td>
<td>< 9.5</td>
<td>< 9.5</td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-----------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Title 22 Metals - EPA Methods 6010/7470</td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>µg/L</td>
<td>< 60</td>
<td>220</td>
<td>< 60</td>
<td>< 60</td>
<td>< 60</td>
<td>< 60</td>
</tr>
<tr>
<td>Arsenic</td>
<td>µg/L</td>
<td>28</td>
<td>38</td>
<td>32</td>
<td>11</td>
<td>6.2</td>
<td>< 5.0</td>
<td>< 5.0</td>
<td>< 5.0</td>
<td>27</td>
<td>9.3</td>
<td>< 5.0</td>
<td>8.4</td>
<td>5.7</td>
<td>< 5.0</td>
</tr>
<tr>
<td>Barium</td>
<td>µg/L</td>
<td>41</td>
<td>110</td>
<td>37</td>
<td>22</td>
<td>260</td>
<td>270</td>
<td>46</td>
<td>48</td>
<td>64</td>
<td>25</td>
<td>92</td>
<td>260</td>
<td>15</td>
<td>68</td>
</tr>
<tr>
<td>Chromium</td>
<td>µg/L</td>
<td>< 10</td>
</tr>
<tr>
<td>Cobalt</td>
<td>µg/L</td>
<td>< 20</td>
</tr>
<tr>
<td>Lead</td>
<td>µg/L</td>
<td>< 3.0</td>
<td>< 3.0</td>
<td>< 3.0</td>
<td>13</td>
<td>< 3.0</td>
<td>< 3.0</td>
<td>< 3.0</td>
<td>< 3.0</td>
<td>< 3.0</td>
<td>8.2</td>
<td>4.4</td>
<td>< 3.0</td>
<td>< 3.0</td>
<td>< 3.0</td>
</tr>
<tr>
<td>Mercury</td>
<td>µg/L</td>
<td>< 0.20</td>
<td>< 0.20</td>
<td>< 0.20</td>
<td>< 0.20</td>
<td>< 0.20</td>
<td>0.27</td>
<td>0.22</td>
<td>< 0.20</td>
<td>< 0.20</td>
<td>< 0.20</td>
<td>< 0.20</td>
<td>0.21</td>
<td>< 0.20</td>
<td>< 0.20</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>µg/L</td>
<td>< 20</td>
</tr>
<tr>
<td>Nickel</td>
<td>µg/L</td>
<td>< 20</td>
<td>36</td>
<td>< 20</td>
<td>< 20</td>
<td>< 20</td>
</tr>
<tr>
<td>Thallium</td>
<td>µg/L</td>
<td>< 5.0</td>
<td>10</td>
<td>11</td>
<td>5.0</td>
<td>5.0</td>
<td>28</td>
</tr>
<tr>
<td>Vanadium</td>
<td>µg/L</td>
<td>< 10</td>
</tr>
<tr>
<td>Zinc</td>
<td>µg/L</td>
<td>< 20</td>
<td>26</td>
<td>33</td>
<td>59</td>
<td>21</td>
<td>38</td>
<td>51</td>
<td>23</td>
<td>< 20</td>
<td>< 20</td>
<td>130</td>
<td>110</td>
<td>52</td>
<td>180</td>
</tr>
</tbody>
</table>

General Chemistry

| pH | 6.7 | 7.2 | 7.3 | 7.4 | 7.6 | 7.7 | 7.3 | 7.1 | 7.1 | 7.4 | 6.9 | 6.9 | 7.9 | 6.6 | 7.5 |

NOTES:
All data presented in the *Results of Investigation, Mission Bay North of Channel Report*, Prepared by ENVIRON, April 22, 1997

[DUP] indicates duplicate sample.

<xx> indicates not detected above laboratory detection limit xx.

Y = Sample exhibits fuel pattern which does not resemble standard; see Appendix B for discussion.

H = Heavier hydrocarbons than indicated standard; see Appendix B for discussion.

L = Lighter hydrocarbons than indicated standard; see Appendix B for discussion.

J = Estimated high sample dilution results in elevated detection limits; see Appendix B for discussion.

For a complete listing of chemicals in ground water, see Appendix B.
TABLE A-3: DETECTIONS OF PESTICIDES AND PCBs IN SOIL

Mission Bay South
Cattelus Mission Bay
San Francisco, California

<table>
<thead>
<tr>
<th>Compound</th>
<th>Total # of Samples</th>
<th># of Detections</th>
<th>Detection Frequency</th>
<th>Range (µg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldrin</td>
<td>205</td>
<td>1</td>
<td><1%</td>
<td>160</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>205</td>
<td>1</td>
<td><1%</td>
<td>120</td>
</tr>
<tr>
<td>Endosulfan I</td>
<td>205</td>
<td>1</td>
<td><1%</td>
<td>160</td>
</tr>
<tr>
<td>Endrin</td>
<td>205</td>
<td>1</td>
<td><1%</td>
<td>31</td>
</tr>
<tr>
<td>HCH (gamma) Lindane</td>
<td>205</td>
<td>1</td>
<td><1%</td>
<td>160</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>205</td>
<td>1</td>
<td><1%</td>
<td>160</td>
</tr>
<tr>
<td>Heptachlor Epoxide</td>
<td>205</td>
<td>2</td>
<td>1%</td>
<td>12 - 160</td>
</tr>
</tbody>
</table>

Notes:
All data presented in the *Results of investigation, Mission Bay South of Channel Report,*
Prepared by ENVIRON, February 4, 1998
Polychlorinated biphenyls (PCBs) were not detected in soil samples collected during the South of Channel investigation.
For a complete listing of pesticides and PCB results in soil, see Table D-1 in Appendix D.
TABLE A-4: DETECTIONS OF PAHs IN SOIL

Mission Bay South
Cateillus Mission Bay
San Francisco, California

<table>
<thead>
<tr>
<th>Compound</th>
<th>Total # of Samples</th>
<th># of Detections</th>
<th>Detection Frequency</th>
<th>Range (µg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noncarcinogenic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Methylnaphthalene</td>
<td>205</td>
<td>1</td>
<td><1%</td>
<td>1,100</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>205</td>
<td>1</td>
<td><1%</td>
<td>1,600</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>205</td>
<td>2</td>
<td>1%</td>
<td>1,700 - 2,100</td>
</tr>
<tr>
<td>Anthracene</td>
<td>205</td>
<td>2</td>
<td>1%</td>
<td>2,500 - 6,900</td>
</tr>
<tr>
<td>Benzo[g,h,i]perylene</td>
<td>205</td>
<td>4</td>
<td>2%</td>
<td>340 - 2,600</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>205</td>
<td>10</td>
<td>5%</td>
<td>330 - 7,700</td>
</tr>
<tr>
<td>Fluorene</td>
<td>205</td>
<td>1</td>
<td><1%</td>
<td>2,900</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>205</td>
<td>1</td>
<td><1%</td>
<td>1,500</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>205</td>
<td>14</td>
<td>7%</td>
<td>330 - 17,000</td>
</tr>
<tr>
<td>Pyrene</td>
<td>205</td>
<td>10</td>
<td>5%</td>
<td>370 - 14,000</td>
</tr>
<tr>
<td>Carcinogenic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzo[a]anthracene</td>
<td>205</td>
<td>7</td>
<td>3%</td>
<td>350 - 11,000</td>
</tr>
<tr>
<td>Benzo[e]pyrene</td>
<td>205</td>
<td>8</td>
<td>4%</td>
<td>390 - 8,700</td>
</tr>
<tr>
<td>Benzo[b]fluoranthene</td>
<td>205</td>
<td>13</td>
<td>6%</td>
<td>340 - 9,600</td>
</tr>
<tr>
<td>Benzo[k]fluoranthene</td>
<td>205</td>
<td>5</td>
<td>2%</td>
<td>410 - 3,000</td>
</tr>
<tr>
<td>Chrysene</td>
<td>205</td>
<td>8</td>
<td>4%</td>
<td>430 - 6,800</td>
</tr>
<tr>
<td>Dibenz[a,h]anthracene</td>
<td>205</td>
<td>1</td>
<td><1%</td>
<td>460</td>
</tr>
<tr>
<td>Indeno[1,2,3-cd]pyrene</td>
<td>205</td>
<td>4</td>
<td>2%</td>
<td>330 - 3,200</td>
</tr>
</tbody>
</table>

Notes:

All data presented in the *Results of Investigation, Mission Bay South of Channel Report,*

Prepared by ENVIRON, February 4, 1993

PAH = Polycyclic aromatic hydrocarbons

For a complete listing of PAH results in soil, see Table D-2 in Appendix D.
TABLE A-5: DETECTIONS OF OTHER SEMIVOLATILE ORGANIC COMPOUNDS IN SOIL AND GROUND WATER

Mission Bay South
Cateillus Mission Bay
San Francisco, California

<table>
<thead>
<tr>
<th>Compound</th>
<th>Media</th>
<th>Total # of Samples (1)</th>
<th># of Detections</th>
<th>Detection Frequency</th>
<th>Range (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dibenzofuran</td>
<td>Soil</td>
<td>205</td>
<td>1</td>
<td><1%</td>
<td>2,000</td>
</tr>
<tr>
<td>2,4-Dimethylphenol</td>
<td>GW</td>
<td>105</td>
<td>1</td>
<td>1%</td>
<td>47</td>
</tr>
<tr>
<td>2-Methylphenol</td>
<td>GW</td>
<td>105</td>
<td>1</td>
<td>1%</td>
<td>33</td>
</tr>
<tr>
<td>4-Methylphenol</td>
<td>GW</td>
<td>105</td>
<td>1</td>
<td>1%</td>
<td>79</td>
</tr>
<tr>
<td>DEHP (2)</td>
<td>GW</td>
<td>105</td>
<td>1</td>
<td>1%</td>
<td>51</td>
</tr>
<tr>
<td>Phenol</td>
<td>GW</td>
<td>105</td>
<td>1</td>
<td>1%</td>
<td>13</td>
</tr>
</tbody>
</table>

Notes:

All data presented in the *Results of Investigation, Mission Bay South of Channel Report*,
Prepared by ENVIRO N, February 4, 1998

(1) The total number of ground water samples does not include seven duplicate samples. For the seven duplicate samples, a detection in either the primary or duplicate was called a detection and the average of the values was taken as the sample concentration, using half the detection limit if either was a non-detect.

(2) Bis(2-ethylhexyl)phthalate (DEHP) is a common field and laboratory contaminant.

GW = Ground water sample
ppb = parts per billion (μg/kg for soil and μg/L for ground water)

For a complete listing of semivolatile organic compound results in soil and ground water, see Table D-2 in Appendix D.
TABLE A-6: DETECTIONS OF PAHs IN GROUND WATER
Mission Bay South
Cateillus Mission Bay
San Francisco, California

<table>
<thead>
<tr>
<th>Compound</th>
<th>Total # of Samples (1)</th>
<th># of Detections</th>
<th>Detection Frequency</th>
<th>Range (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noncarcinogenic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Methylnaphthalene</td>
<td>105</td>
<td>1</td>
<td>1%</td>
<td>270</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>105</td>
<td>3</td>
<td>3%</td>
<td>11 - 120</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>105</td>
<td>1</td>
<td>1%</td>
<td>32</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>105</td>
<td>3</td>
<td>3%</td>
<td>17 - 1,400</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>105</td>
<td>3</td>
<td>3%</td>
<td>11 - 120</td>
</tr>
<tr>
<td>Pyrene</td>
<td>105</td>
<td>2</td>
<td>2%</td>
<td>13 - 42</td>
</tr>
<tr>
<td>Carcinogenic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzo[b]fluoranthene</td>
<td>105</td>
<td>1</td>
<td>1%</td>
<td>22</td>
</tr>
</tbody>
</table>

Notes:

All data presented in the *Results of Investigation, Mission Bay South of Channel Report*,
Prepared by ENVIRON, February 4, 1998
(1) = Seven duplicate samples were not counted as additional samples. For the seven duplicate samples, a detection in either the primary or duplicate was called a detection and the average of the values was taken as the sample concentration, using half the detection limit if either was a non-detect.

PAH = Polycyclic aromatic hydrocarbons
For a complete listing of PAH results in soil, see Table D-2 in Appendix D.
TABLE A-7: DETECTIONS OF VOLATILE ORGANIC COMPOUNDS IN SOIL

Mission Bay South
Catellus Mission Bay
San Francisco, California

<table>
<thead>
<tr>
<th>Compound</th>
<th>Total # of Samples (1)</th>
<th># of Detections</th>
<th>Detection Frequency</th>
<th>Range (µg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freon 113</td>
<td>105</td>
<td>1</td>
<td>1%</td>
<td>8.2</td>
</tr>
<tr>
<td>Freon 11</td>
<td>105</td>
<td>1</td>
<td>1%</td>
<td>5</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>105</td>
<td>9</td>
<td>9%</td>
<td>11 - 120</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>105</td>
<td>1</td>
<td>1%</td>
<td>16</td>
</tr>
<tr>
<td>Acetone (2)</td>
<td>105</td>
<td>24</td>
<td>23%</td>
<td>14 - 770</td>
</tr>
<tr>
<td>Benzene</td>
<td>105</td>
<td>6</td>
<td>6%</td>
<td>13 - 270</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>105</td>
<td>5</td>
<td>5%</td>
<td>5.2 - 45</td>
</tr>
<tr>
<td>Chloroform</td>
<td>105</td>
<td>1</td>
<td>1%</td>
<td>6.2</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>105</td>
<td>5</td>
<td>5%</td>
<td>7.3 - 2,700</td>
</tr>
<tr>
<td>Methylene Chloride (2)</td>
<td>105</td>
<td>12</td>
<td>11%</td>
<td>10 - 110</td>
</tr>
<tr>
<td>Styrene</td>
<td>105</td>
<td>1</td>
<td>1%</td>
<td>51</td>
</tr>
<tr>
<td>PCE</td>
<td>105</td>
<td>1</td>
<td>1%</td>
<td>11</td>
</tr>
<tr>
<td>Toluene</td>
<td>105</td>
<td>11</td>
<td>10%</td>
<td>5 - 4,300</td>
</tr>
<tr>
<td>TCE</td>
<td>105</td>
<td>1</td>
<td>1%</td>
<td>110</td>
</tr>
<tr>
<td>m & p-Xylenes</td>
<td>105</td>
<td>7</td>
<td>7%</td>
<td>5 - 8,000</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>105</td>
<td>5</td>
<td>5%</td>
<td>5 - 4,900</td>
</tr>
</tbody>
</table>

Notes:

All data presented in the *Results of Investigation, Mission Bay South of Channel Report*.

Prepared by ENVIRON, February 4, 1998

(1) Shallow soil samples were not tested for volatile organic compounds since it is unlikely these compounds would persist in surface soils due to their volatile nature.

(2) Common laboratory contaminant.

PCE = Tetrachloroethene
TCE = Trichloroethene

For a complete listing of volatile organic compound results in soil, see Table D-3 in Appendix D.
TABLE A-8: DETECTIONS OF VOLATILE ORGANIC COMPOUNDS IN GROUND WATER

Mission Bay South
Catellus Mission Bay
San Francisco, California

<table>
<thead>
<tr>
<th>Compound</th>
<th>Total # of Samples (1)</th>
<th># of Detections</th>
<th>Detection Frequency</th>
<th>Range (μg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCA</td>
<td>105</td>
<td>2</td>
<td>2%</td>
<td>1.5 - 2.6</td>
</tr>
<tr>
<td>1,1-DCA</td>
<td>105</td>
<td>1</td>
<td>1%</td>
<td>1.5</td>
</tr>
<tr>
<td>cis-1,2-DCE</td>
<td>105</td>
<td>1</td>
<td>1%</td>
<td>31</td>
</tr>
<tr>
<td>trans-1,2-DCE</td>
<td>105</td>
<td>1</td>
<td>1%</td>
<td>6.9</td>
</tr>
<tr>
<td>Acetone (2)</td>
<td>105</td>
<td>1</td>
<td>1%</td>
<td>5.5</td>
</tr>
<tr>
<td>Benzene</td>
<td>105</td>
<td>9</td>
<td>9%</td>
<td>1.0 - 240</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>105</td>
<td>3</td>
<td>3%</td>
<td>1.3 - 8.7</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>105</td>
<td>1</td>
<td>1%</td>
<td>5.0</td>
</tr>
<tr>
<td>Chloroform</td>
<td>105</td>
<td>4</td>
<td>4%</td>
<td>1.0 - 23</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>105</td>
<td>3</td>
<td>3%</td>
<td>1.3 - 2.4</td>
</tr>
<tr>
<td>PCE</td>
<td>105</td>
<td>1</td>
<td>1%</td>
<td>1.3</td>
</tr>
<tr>
<td>Toluene</td>
<td>105</td>
<td>4</td>
<td>4%</td>
<td>1.0 - 41</td>
</tr>
<tr>
<td>TCE</td>
<td>105</td>
<td>1</td>
<td>1%</td>
<td>3.6</td>
</tr>
<tr>
<td>m & p-Xylenes</td>
<td>105</td>
<td>7</td>
<td>7%</td>
<td>1.6 - 34</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>105</td>
<td>3</td>
<td>3%</td>
<td>2.5 - 12</td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>105</td>
<td>1</td>
<td>1%</td>
<td>38</td>
</tr>
</tbody>
</table>

Notes:

All data presented in the *Results of Investigation, Mission Bay South of Channel Report*,
Prepared by ENVIRON, February 4, 1998

(1) = Seven duplicate samples were not counted as additional samples. For the seven duplicate samples, a detection in either the primary or duplicate was called a detection. The higher of the two results is reported in the range.

(2) Common laboratory contaminant.
TCA = 1,1,1-Trichloroethane
1,1-DCA = 1,1-Dichloroethane
 cis-1,2-DCE = cis-1,2-Dichloroethene
trans-1,2-DCE = trans-1,2-Dichloroethene
PCE = Tetrachloroethene
TCE = Trichloroethene

For a complete listing of volatile organic compound results in ground water, see Table D-3 in Appendix D.
TABLE A-9: DETECTIONS OF METALS IN SOIL

Mission Bay South
Catellus Mission Bay
San Francisco, California

<table>
<thead>
<tr>
<th>Compound</th>
<th>Total # of Samples</th>
<th># of Detections</th>
<th>Detection Frequency</th>
<th>South of Channel Range (mg/kg)</th>
<th>95% UCL (mg/kg)</th>
<th>95% UCL (mg/kg)</th>
<th>95% UCL (mg/kg)</th>
<th>LBNL Fill/Colluvium (1) Range (mg/kg)</th>
<th>95% UCL (mg/kg)</th>
<th>95% UCL (mg/kg)</th>
<th>California Soils (2) Range (mg/kg)</th>
<th>95% UCL (mg/kg)</th>
<th>95% UCL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony</td>
<td>205</td>
<td>16</td>
<td>8%</td>
<td>6.2 - 325</td>
<td>8.8</td>
<td>1.0 - 5.0</td>
<td>5.9</td>
<td>3.0</td>
<td><1.0 - 2.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Arsenic</td>
<td>205</td>
<td>183</td>
<td>89%</td>
<td>1.1 - 247</td>
<td>17</td>
<td>0.25 - 66</td>
<td>14</td>
<td>7.3</td>
<td>0.3 - 69</td>
<td>12</td>
<td>8.3</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Barium</td>
<td>205</td>
<td>204</td>
<td>100%</td>
<td>2.0 - 3,250</td>
<td>277</td>
<td>0.99 - 1,200</td>
<td>359</td>
<td>147</td>
<td>150 - 1,500</td>
<td>716</td>
<td>748</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Beryllium</td>
<td>205</td>
<td>120</td>
<td>59%</td>
<td>0.2 - 4.7</td>
<td>0.4</td>
<td>0.03 - 1.9</td>
<td>0.9</td>
<td>0.5</td>
<td>ND - 3.0</td>
<td>2.0</td>
<td>0.7</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Cadmium</td>
<td>205</td>
<td>52</td>
<td>25%</td>
<td>0.52 - 15.2</td>
<td>0.9</td>
<td>0.05 - 3.5</td>
<td>1.5</td>
<td>0.5</td>
<td>0.01 - 22</td>
<td>7.1</td>
<td>5.1</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Chromium</td>
<td>205</td>
<td>205</td>
<td>100%</td>
<td>6.4 - 1,710</td>
<td>226</td>
<td>11 - 102</td>
<td>91</td>
<td>55</td>
<td>10 - 1,500</td>
<td>142</td>
<td>159</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Chromium VI</td>
<td>205</td>
<td>14</td>
<td>7%</td>
<td>0.05 - 4.4</td>
<td>0.1</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Cobalt</td>
<td>205</td>
<td>204</td>
<td>100%</td>
<td>2.0 - 119</td>
<td>26</td>
<td>2.5 - 110</td>
<td>22</td>
<td>17</td>
<td>ND - 50</td>
<td>18</td>
<td>15</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Copper</td>
<td>205</td>
<td>204</td>
<td>100%</td>
<td>2.9 - 3,520</td>
<td>162</td>
<td>0.3 - 107</td>
<td>60</td>
<td>32</td>
<td>5.0 - 300</td>
<td>61</td>
<td>59</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Lead</td>
<td>205</td>
<td>192</td>
<td>94%</td>
<td>1.2 - 47,900</td>
<td>927</td>
<td>0.5 - 211</td>
<td>15</td>
<td>14</td>
<td>ND - 300</td>
<td>40</td>
<td>37</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Mercury</td>
<td>205</td>
<td>128</td>
<td>62%</td>
<td>0.1 - 32.7</td>
<td>1.1</td>
<td>0.05 - 0.76</td>
<td>0.3</td>
<td>0.2</td>
<td>0.01 - 1.5</td>
<td>1.0</td>
<td>0.2</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>205</td>
<td>8</td>
<td>4%</td>
<td>2.1 - 8.6</td>
<td>1.4</td>
<td>0.25 - 4.6</td>
<td>3.2</td>
<td>1.4</td>
<td>ND - 5.0</td>
<td>2.4</td>
<td>0.8</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Nickel</td>
<td>205</td>
<td>204</td>
<td>100%</td>
<td>7.8 - 2,650</td>
<td>375</td>
<td>2.0 - 140</td>
<td>120</td>
<td>64</td>
<td><5.0 - 200</td>
<td>49</td>
<td>46</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Selenium</td>
<td>205</td>
<td>1</td>
<td><1%</td>
<td>0.88</td>
<td>0.4</td>
<td>0.5 - 17</td>
<td>5.6</td>
<td>2.0</td>
<td><0.1 - 1.5</td>
<td>1.1</td>
<td>0.3</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Silver</td>
<td>205</td>
<td>13</td>
<td>7%</td>
<td>1.0 - 4.6</td>
<td>0.8</td>
<td>0.2 - 4.0</td>
<td>2</td>
<td>0.6</td>
<td><0.5 - 5.0 (3)</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Thallium</td>
<td>205</td>
<td>2</td>
<td>1%</td>
<td>0.78 - 1.0</td>
<td>1.7</td>
<td>0.5 - 110</td>
<td>43</td>
<td>11</td>
<td>--</td>
<td>--</td>
<td></td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Vanadium</td>
<td>205</td>
<td>205</td>
<td>100%</td>
<td>8.9 - 218</td>
<td>40</td>
<td>0.79 - 377</td>
<td>78</td>
<td>54</td>
<td>30 - 500</td>
<td>139</td>
<td>140</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Zinc</td>
<td>205</td>
<td>205</td>
<td>100%</td>
<td>11 - 3,880</td>
<td>257</td>
<td>24 - 112</td>
<td>92</td>
<td>60</td>
<td>25 - 212</td>
<td>107</td>
<td>140</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Notes:

All data presented in the *Results of Investigation, Mission Bay South of Channel Report*,
Prepared by ENVIRON, February 4, 1998

95% UCL = 95% Upper Confidence Limit of the arithmetic mean.

(1) Background values in fill/colluvium from *Protocol for Determining Background Concentrations of Metals in Soils at Lawrence Berkeley National Laboratory (LBNL)* (LBNL August 1995).

(2) Background values in California soils from *Elements in North American Soils* (Dragun and Chiasson 1991).

(3) Range for soils in western United States.

For a complete listing of metals results in soil, see Table D-4 in Appendix D.
<table>
<thead>
<tr>
<th>Compound</th>
<th>Total # of Samples (1)</th>
<th># of Detections</th>
<th>Detection Frequency</th>
<th>Range (mg/L)</th>
<th>95% UCL (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony</td>
<td>105</td>
<td>2</td>
<td>2%</td>
<td>0.061 - 0.064</td>
<td>0.038</td>
</tr>
<tr>
<td>Arsenic</td>
<td>105</td>
<td>80</td>
<td>76%</td>
<td>0.002 - 0.170</td>
<td>0.013</td>
</tr>
<tr>
<td>Barium</td>
<td>105</td>
<td>104</td>
<td>99%</td>
<td>0.018 - 0.9</td>
<td>0.559</td>
</tr>
<tr>
<td>Cadmium</td>
<td>105</td>
<td>2</td>
<td>2%</td>
<td>0.0014 - 0.006</td>
<td>0.001</td>
</tr>
<tr>
<td>Chromium</td>
<td>105</td>
<td>88</td>
<td>76%</td>
<td>0.001 - 0.083</td>
<td>0.006</td>
</tr>
<tr>
<td>Cobalt</td>
<td>105</td>
<td>11</td>
<td>10%</td>
<td>0.011 - 0.025</td>
<td>0.007</td>
</tr>
<tr>
<td>Copper</td>
<td>105</td>
<td>80</td>
<td>76%</td>
<td>0.001 - 0.120</td>
<td>0.011</td>
</tr>
<tr>
<td>Lead</td>
<td>105</td>
<td>56</td>
<td>53%</td>
<td>0.001 - 0.370</td>
<td>0.024</td>
</tr>
<tr>
<td>Mercury</td>
<td>105</td>
<td>7</td>
<td>7%</td>
<td>0.0002 - 0.0015</td>
<td>0.00015</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>105</td>
<td>7</td>
<td>7%</td>
<td>0.020 - 0.087</td>
<td>0.015</td>
</tr>
<tr>
<td>Nickel</td>
<td>105</td>
<td>105</td>
<td>100%</td>
<td>0.0014 - 0.250</td>
<td>0.023</td>
</tr>
<tr>
<td>Selenium</td>
<td>105</td>
<td>11</td>
<td>10%</td>
<td>0.0022 - 0.0094</td>
<td>0.002</td>
</tr>
<tr>
<td>Silver</td>
<td>105</td>
<td>1</td>
<td>1%</td>
<td>0.0013</td>
<td>0.001</td>
</tr>
<tr>
<td>Vanadium</td>
<td>105</td>
<td>17</td>
<td>16%</td>
<td>0.010 - 0.069</td>
<td>0.009</td>
</tr>
<tr>
<td>Zinc</td>
<td>105</td>
<td>23</td>
<td>22%</td>
<td>0.020 - 0.700</td>
<td>0.054</td>
</tr>
</tbody>
</table>

Notes:

All data presented in the Results of Investigation, Mission Bay South of Channel Report, Prepared by ENVIRON, February 4, 1998
(1) Seven duplicate samples not counted as additional samples. For the seven duplicate samples, a detection in either the primary or duplicate was called a detection and the average of the values was taken as the sample concentration, using half the detection limit if either was a non-detect. Beryllium and Thallium were not detected in South of Channel ground water. For a complete listing of metals results in ground water, see Table D-4 in Appendix D.
TABLE A-11: DETECTIONS OF TOTAL PETROLEUM HYDROCARBONS IN SOIL
Mission Bay South
Catellus Mission Bay
San Francisco, California

<table>
<thead>
<tr>
<th>Compound</th>
<th>Total # of Samples</th>
<th># of Detections</th>
<th>Detection Frequency</th>
<th>Range (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPH Gasoline Range</td>
<td>205</td>
<td>13</td>
<td>6%</td>
<td>1.2 - 490</td>
</tr>
<tr>
<td>TPH Diesel Range</td>
<td>205</td>
<td>51</td>
<td>25%</td>
<td>1.9 - 12,000</td>
</tr>
<tr>
<td>TPH Motor Oil Range</td>
<td>205</td>
<td>116</td>
<td>57%</td>
<td>5 - 4,300</td>
</tr>
</tbody>
</table>

Notes:
All data presented in the Results of Investigation, Mission Bay South of Channel Report.
Prepared by ENVIRON, February 4, 1998

TPH Gasoline Range = Includes compounds identified as total petroleum hydrocarbons (TPH) gasoline as well as hydrocarbons in the unknown volatile hydrocarbon range.

TPH Diesel Range = Includes compounds identified as TPH diesel as well as unknown hydrocarbons in the diesel range.

TPH Motor Oil Range = Includes compounds identified as TPH motor oil as well as unknown hydrocarbons in the motor oil range.

For a complete listing of total petroleum hydrocarbon results in soil, see Table D-5 in Appendix D.
TABLE A-12: DETECTIONS OF TOTAL PETROLEUM HYDROCARBONS IN GROUND WATER

Mission Bay South
Cateillus Mission Bay
San Francisco, California

<table>
<thead>
<tr>
<th>Compound</th>
<th>Total # of Samples (1)</th>
<th># of Detections</th>
<th>Detection Frequency</th>
<th>Range (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPH Gasoline Range</td>
<td>105</td>
<td>17</td>
<td>16%</td>
<td>0.052 - 36</td>
</tr>
<tr>
<td>TPH Diesel Range</td>
<td>105</td>
<td>40</td>
<td>38%</td>
<td>0.068 - 330</td>
</tr>
<tr>
<td>TPH Motor Oil Range</td>
<td>105</td>
<td>30</td>
<td>29%</td>
<td>0.13 - 4.7</td>
</tr>
</tbody>
</table>

Notes:

All data presented in the *Results of Investigation, Mission Bay South of Channel Report*,
Prepared by ENVRION, February 4, 1998

(1) = Seven duplicate samples were not counted as additional samples. For the seven duplicate samples, a detection in either the primary or duplicate was called a detection and the average of the values was taken as the sample concentration, using half the detection limit if either was a non-detect.

TPH Gasoline Range = Includes compounds identified as total petroleum hydrocarbons (TPH) gasoline as well as hydrocarbons in the unknown volatile hydrocarbon range.

TPH Diesel Range = Includes compounds identified as TPH diesel as well as unknown hydrocarbons in the diesel range.

TPH Motor Oil Range = Includes compounds identified as TPH motor oil as well as unknown hydrocarbons in the motor oil range.

For a complete listing of total petroleum hydrocarbon results in ground water, see Table D-3 in Appendix D.
TABLE A-13: SUMMARY OF pH IN SOIL AND GROUND WATER

Mission Bay South
Catelius Mission Bay
San Francisco, California

<table>
<thead>
<tr>
<th>Compound</th>
<th>Total # of Samples (1)</th>
<th>Range</th>
<th>Standard</th>
<th># of Samples Exceeding Standard</th>
<th>Exceedence Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH in Soil</td>
<td>205</td>
<td>5.2 - 11.1</td>
<td>5.0 - 9.0 (2)</td>
<td>6</td>
<td>3%</td>
</tr>
<tr>
<td>pH in Ground Water</td>
<td>105</td>
<td>6.7 - 11.3</td>
<td>6.5 - 8.5 (3)</td>
<td>5</td>
<td>5%</td>
</tr>
</tbody>
</table>

Notes:

1. The total number of ground water samples does not include seven duplicate samples. For the seven duplicate samples, a detection in either the primary or duplicate was called a detection and the average of the values was taken as the sample concentration, using half the detection limit if either was a non-detect.

For a complete listing of pH results in soil and ground water, see Table D-6 in Appendix D.
TABLE A-14: DETECTIONS OF ASBESTOS IN SOIL

Mission Bay South
Catellus Mission Bay
San Francisco, California

<table>
<thead>
<tr>
<th>Level</th>
<th>Total # of Samples</th>
<th># of Detections</th>
<th>Detection Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trace (<1%)</td>
<td>205</td>
<td>29</td>
<td>14%</td>
</tr>
<tr>
<td>1 - 5%</td>
<td>205</td>
<td>9</td>
<td>4%</td>
</tr>
<tr>
<td>5 - 10%</td>
<td>205</td>
<td>6</td>
<td>3%</td>
</tr>
<tr>
<td>10 - 30%</td>
<td>205</td>
<td>3</td>
<td>1.5%</td>
</tr>
<tr>
<td>65 - 75%</td>
<td>205</td>
<td>2</td>
<td>1%</td>
</tr>
</tbody>
</table>

Notes:
All data presented in the *Results of Investigation, Mission Bay South of Channel Report*,
Prepared by ENVIRO*N*, February 4, 1998
For a complete listing of asbestos results in soil, see Table D-6 in Appendix D.
APPENDIX B

Health-Based Interim Target Levels (ITLs)
APPENDIX B
Health-Based Interim Target Levels (ITLs)

LIST OF TABLES

Table B-1: Soil Interim Target Levels (ITLs) Protective of Carcinogenic Effects (mg/kg)
Table B-2: Soil Interim Target Levels (ITLs) Protective of Chronic Noncarcinogenic Health Effects (mg/kg)
Table B-3: Lowest Soil Interim Target Levels (mg/kg)
Table B-4: Comparison of Site Data and ITLs for Non-intrusive Populations

LIST OF FIGURES

Figure B-1: Exceedances of Non-intrusive Population ITLs in Shallow Soil
Figure B-2: Location of Proposed Fencing, Mission Bay RMP Area
Table B-1

SOIL INTERIM TARGET LEVELS (ITLs)

PROTECTIVE OF CARCINOGENIC EFFECTS

(mg/kg)

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Nearby Resident Age-Adjusted</th>
<th>On-Site Commercial Worker</th>
<th>On-Site Trespasser Age-Adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polycyclic Aromatic Hydrocarbons (PAHs)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Methylnaphthalene</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Acenanthylene</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Anthracene</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Benz[a]anthracene</td>
<td>SAT (3,448)†</td>
<td>SAT (27)</td>
<td>SAT (18)</td>
</tr>
<tr>
<td>Benzo[g,h,i]perylene</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Benzo[a]pyrene</td>
<td>SAT (345)</td>
<td>2.7</td>
<td>1.8</td>
</tr>
<tr>
<td>Benzo[b]fluoranthene</td>
<td>SAT (3,448)</td>
<td>SAT (27)</td>
<td>SAT (18)</td>
</tr>
<tr>
<td>Benzo[k]fluoranthene</td>
<td>SAT (3,448)</td>
<td>SAT (27)</td>
<td>SAT (18)</td>
</tr>
<tr>
<td>Chrysene</td>
<td>SAT (34,000)</td>
<td>SAT (272)</td>
<td>SAT (180)</td>
</tr>
<tr>
<td>Dibenzo[ab]anthracene</td>
<td>SAT (328)</td>
<td>SAT (7.9)</td>
<td>SAT (5.3)</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Fluorene</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Indeno[1,2,3-cd]pyrene</td>
<td>SAT (3,448)</td>
<td>SAT (27)</td>
<td>SAT (18)</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Pyrene</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Metals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Arsenic</td>
<td>112</td>
<td>29</td>
<td>24</td>
</tr>
<tr>
<td>Barium</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Beryllium</td>
<td>160</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Cadmium</td>
<td>90</td>
<td>191</td>
<td>951</td>
</tr>
<tr>
<td>Chromium, trivalent</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Chromium, hexavalent</td>
<td>2.6</td>
<td>5.4</td>
<td>22</td>
</tr>
<tr>
<td>Cobalt</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Copper</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Lead</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Mercury</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Nickel</td>
<td>1478</td>
<td>3.145</td>
<td>15.673</td>
</tr>
<tr>
<td>Selenium</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Silver</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Thallium</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Vanadium</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Zinc</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
TABLE B-1
SOIL INTERIM TARGET LEVELS (ITLs) PROTECTIVE OF CARCINOGENIC EFFECTS
(mg/kg)

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Current Populations</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nearby Resident</td>
<td>On-Site</td>
<td>On-Site</td>
</tr>
<tr>
<td></td>
<td>Age-Adjusted</td>
<td>Commercial</td>
<td>Trespasser</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Worker</td>
<td>Age-Adjusted</td>
</tr>
<tr>
<td>Petroleum Hydrocarbons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPH-Gasoline</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>TPH-Diesel</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>TPH-Residual</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

N/A = not applicable

* The ITL indicated in parentheses represents an ITL that is greater than the soil saturation limit for that compound. The ITL represents a conservative, health-protective estimate of the concentration of chemical that can be present in the soil without exceeding the target risk level.
Table B-2
Soil Interim Target Levels (ITLs)
Protective of Chronic Noncancerogenic Health Effects

(mg/kg)

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Nearby Resident Adult</th>
<th>Nearby Resident Child</th>
<th>On-Site Commercial Worker</th>
<th>On-Site Trespasser Adult</th>
<th>On-Site Trespasser Child</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polycyclic Aromatic Hydrocarbons (PAHs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Methylnaphthalene</td>
<td>SAT (2,920,000)</td>
<td>SAT (1,250,000)</td>
<td>SAT (46,000)</td>
<td>SAT (85,000)</td>
<td>SAT (11,500)</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>SAT (4,380,000)</td>
<td>SAT (1,880,000)</td>
<td>SAT (69,000)</td>
<td>SAT (128,000)</td>
<td>SAT (17,000)</td>
</tr>
<tr>
<td>Acenaphthyne</td>
<td>SAT (2,920,000)</td>
<td>SAT (1,250,000)</td>
<td>SAT (46,000)</td>
<td>SAT (85,000)</td>
<td>SAT (11,500)</td>
</tr>
<tr>
<td>Anthracene</td>
<td>SAT (21,900,000)</td>
<td>SAT (9,390,000)</td>
<td>SAT (347,000)</td>
<td>SAT (639,000)</td>
<td>SAT (86,000)</td>
</tr>
<tr>
<td>Benzo[a]anthracene</td>
<td>SAT (2,920,000)</td>
<td>SAT (1,250,000)</td>
<td>SAT (46,000)</td>
<td>SAT (85,000)</td>
<td>SAT (11,500)</td>
</tr>
<tr>
<td>Benzo[a]pyrene</td>
<td>SAT (2,920,000)</td>
<td>SAT (1,250,000)</td>
<td>SAT (46,000)</td>
<td>SAT (85,000)</td>
<td>SAT (11,500)</td>
</tr>
<tr>
<td>Benzo[b]fluoranthene</td>
<td>SAT (2,920,000)</td>
<td>SAT (1,250,000)</td>
<td>SAT (46,000)</td>
<td>SAT (85,000)</td>
<td>SAT (11,500)</td>
</tr>
<tr>
<td>Benzo[k]fluoranthene</td>
<td>SAT (2,920,000)</td>
<td>SAT (1,250,000)</td>
<td>SAT (46,000)</td>
<td>SAT (85,000)</td>
<td>SAT (11,500)</td>
</tr>
<tr>
<td>Chrysene</td>
<td>SAT (2,920,000)</td>
<td>SAT (1,250,000)</td>
<td>SAT (46,000)</td>
<td>SAT (85,000)</td>
<td>SAT (11,500)</td>
</tr>
<tr>
<td>Dibenz[a]anthracene</td>
<td>SAT (2,920,000)</td>
<td>SAT (1,250,000)</td>
<td>SAT (46,000)</td>
<td>SAT (85,000)</td>
<td>SAT (11,500)</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>SAT (2,920,000)</td>
<td>SAT (1,250,000)</td>
<td>SAT (46,000)</td>
<td>SAT (85,000)</td>
<td>SAT (11,500)</td>
</tr>
<tr>
<td>Pyrene</td>
<td>SAT (2,920,000)</td>
<td>SAT (1,250,000)</td>
<td>SAT (46,000)</td>
<td>SAT (85,000)</td>
<td>SAT (11,500)</td>
</tr>
<tr>
<td>Metals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>29,200</td>
<td>12,514</td>
<td>764</td>
<td>1,859</td>
<td>206</td>
</tr>
<tr>
<td>Arsenic</td>
<td>21,900</td>
<td>9,386</td>
<td>524</td>
<td>1,193</td>
<td>139</td>
</tr>
<tr>
<td>Barium</td>
<td>10,220</td>
<td>4,380</td>
<td>12,949</td>
<td>81,429</td>
<td>20,332</td>
</tr>
<tr>
<td>Beryllium</td>
<td>416,100</td>
<td>178,329</td>
<td>3,868</td>
<td>9,332</td>
<td>1,032</td>
</tr>
<tr>
<td>Cadmium</td>
<td>71,000</td>
<td>31,286</td>
<td>1,094</td>
<td>5,030</td>
<td>543</td>
</tr>
</tbody>
</table>
TABLE B-2
SOIL INTERIM TARGET LEVELS (ITLs)
PROTECTIVE OF CHRONIC NONCARCINOGENIC HEALTH EFFECTS
(mg/kg)

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Nearby Resident Adult</th>
<th>Nearby Resident Child</th>
<th>On-Site Commercial Worker</th>
<th>On-Site Trespasser Adult</th>
<th>On-Site Trespasser Child</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromium, trivalent</td>
<td>23,000,000</td>
<td>13,285,714</td>
<td>1,910,423</td>
<td>4,647,990</td>
<td>515,707</td>
</tr>
<tr>
<td>Chromium, hexavalent</td>
<td>365,000</td>
<td>156,429</td>
<td>10,020</td>
<td>25,382</td>
<td>2,733</td>
</tr>
<tr>
<td>Cobalt</td>
<td>21,170</td>
<td>9,073</td>
<td>23,640</td>
<td>124,719</td>
<td>23,441</td>
</tr>
<tr>
<td>Copper</td>
<td>2,701,000</td>
<td>1,157,371</td>
<td>20,686</td>
<td>171,976</td>
<td>19,081</td>
</tr>
<tr>
<td>Lead*</td>
<td>29,295</td>
<td>10,748</td>
<td>4,203</td>
<td>25,909</td>
<td>2,259</td>
</tr>
<tr>
<td>Mercury</td>
<td>6,778</td>
<td>2,691</td>
<td>164</td>
<td>400</td>
<td>44</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>565,000</td>
<td>156,429</td>
<td>9,552</td>
<td>23,240</td>
<td>2,579</td>
</tr>
<tr>
<td>Nickel</td>
<td>1,460,000</td>
<td>625,714</td>
<td>38,208</td>
<td>92,960</td>
<td>10,314</td>
</tr>
<tr>
<td>Selenium</td>
<td>365,000</td>
<td>156,429</td>
<td>9,552</td>
<td>23,240</td>
<td>2,579</td>
</tr>
<tr>
<td>Silver</td>
<td>365,000</td>
<td>156,429</td>
<td>9,552</td>
<td>23,240</td>
<td>2,579</td>
</tr>
<tr>
<td>Thallium</td>
<td>5,840</td>
<td>2,503</td>
<td>153</td>
<td>372</td>
<td>41</td>
</tr>
<tr>
<td>Vanadium</td>
<td>511,000</td>
<td>211,000</td>
<td>13,373</td>
<td>32,536</td>
<td>3,610</td>
</tr>
<tr>
<td>Zinc</td>
<td>21,900,000</td>
<td>9,385,714</td>
<td>573,127</td>
<td>1,394,397</td>
<td>154,712</td>
</tr>
</tbody>
</table>

Petroleum Hydrocarbons

TPH-Gasoline	SAT (4,015,000)	SAT (1,272,000)	SAT (74,000)	SAT (142,000)	SAT (18,800)
TPH-Diesel	SAT (3,200,000)	SAT (16,000,000)	SAT (686,000)	SAT (1,350,000)	SAT (174,000)
TPH-Residual	SAT (294,000,000)	SAT (126,000,000)	SAT (5,420,000)	SAT (16,600,000)	SAT (1,380,000)

N/A = not applicable

* Lead evaluated using LEADSPREAD (see Section 6.3).

1 The ITL indicated in parentheses represents an ITL that is greater than the soil saturation limit for that compound.

The ITL represents a conservative, health-protective estimate of the concentration of chemical that can be present in the soil without exceeding the target risk level.
<table>
<thead>
<tr>
<th>Chemical</th>
<th>Current Populations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nearby Resident Adult</td>
</tr>
<tr>
<td>Poly cyclic Aromatic Hydrocarbons (PAHs)</td>
<td></td>
</tr>
<tr>
<td>2-Methyl naphthalene</td>
<td>SAT (2,920,000)†</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>SAT (4,380,000)</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>SAT (2,920,000)</td>
</tr>
<tr>
<td>Anthracene</td>
<td>SAT (21,900,000)</td>
</tr>
<tr>
<td>Benz[a]anthracene</td>
<td>SAT (3,448)</td>
</tr>
<tr>
<td>Benzo[g,h,i]pyrylene</td>
<td>SAT (2,920,000)</td>
</tr>
<tr>
<td>Benzo[a]pyrene</td>
<td>SAT (348)</td>
</tr>
<tr>
<td>Benzo[b]fluoranthene</td>
<td>SAT (3,448)</td>
</tr>
<tr>
<td>Benzo[k]fluoranthene</td>
<td>SAT (3,448)</td>
</tr>
<tr>
<td>Chrysene</td>
<td>SAT (34,000)</td>
</tr>
<tr>
<td>Dibenz[a]anthracene</td>
<td>SAT (328)</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>SAT (2,920,000)</td>
</tr>
<tr>
<td>Fluorene</td>
<td>SAT (2,920,000)</td>
</tr>
<tr>
<td>Indeno[1,2,3-cd]pyrene</td>
<td>SAT (3,448)</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>SAT (2,920,000)</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>SAT (21,900,000)</td>
</tr>
<tr>
<td>Pyrene</td>
<td>SAT (2,190,000)</td>
</tr>
<tr>
<td>Metals</td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>29,200</td>
</tr>
<tr>
<td>Arsenic</td>
<td>112</td>
</tr>
<tr>
<td>Barium</td>
<td>10,220</td>
</tr>
<tr>
<td>Beryllium</td>
<td>160</td>
</tr>
<tr>
<td>Cadmium</td>
<td>90</td>
</tr>
<tr>
<td>Chromium, trivalent</td>
<td>73,000,000</td>
</tr>
<tr>
<td>Chromium, hexavalent</td>
<td>2.6</td>
</tr>
<tr>
<td>Cobalt</td>
<td>21,170</td>
</tr>
<tr>
<td>Copper</td>
<td>2,701,000</td>
</tr>
<tr>
<td>Lead</td>
<td>29,295</td>
</tr>
<tr>
<td>Mercury</td>
<td>6,278</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>365,000</td>
</tr>
<tr>
<td>Nickel</td>
<td>1,478</td>
</tr>
<tr>
<td>Selenium</td>
<td>365,000</td>
</tr>
<tr>
<td>Silver</td>
<td>365,000</td>
</tr>
<tr>
<td>Thallium</td>
<td>5,840</td>
</tr>
<tr>
<td>Vanadium</td>
<td>311,000</td>
</tr>
<tr>
<td>Zinc</td>
<td>21,900,000</td>
</tr>
</tbody>
</table>
TABLE B-3
LOWEST SOIL INTERIM TARGET LEVELS
(mg/kg)

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Current Populations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nearby Resident Adult</td>
</tr>
<tr>
<td>Petroleum Hydrocarbons</td>
<td></td>
</tr>
<tr>
<td>TPH-Gasoline</td>
<td>SAT (4,015,000)</td>
</tr>
<tr>
<td>TPH-Diesel</td>
<td>SAT (37,230,000)</td>
</tr>
<tr>
<td>TPH-Residual</td>
<td>SAT (294,000,000)</td>
</tr>
</tbody>
</table>

* The ITL indicated in parentheses represents an ITL that is greater than the soil saturation limit for that compound.

The ITL represents a conservative, health-protective estimate of the concentration of chemical that can be present in the soil without exceeding the target risk level.
TABLE B-4

COMPARISON OF SITE DATA AND ITLs FOR NON-INTRUSIVE POPULATIONS

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Lowest Non-Intrusive Population ITL (mg/kg)</th>
<th>Maximum Surface Soil Concentration (mg/kg)</th>
<th>Maximum Concentration Exceeds ITL</th>
<th>Number of Surface Soil Exceedances</th>
<th>Number of Covered Surface Soil Exceedances</th>
<th>Number of Exposed Surface Soil Exceedances</th>
<th>95% UCL Concentration in Surface Soil (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polycyclic Aromatic Hydrocarbons (PAHs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Methylnaphthalene</td>
<td>SAT (11,500)</td>
<td>ND</td>
<td>no</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>SAT (17,000)</td>
<td>ND</td>
<td>no</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>SAT (11,500)</td>
<td>2.1</td>
<td>no</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Anthracene</td>
<td>SAT (36,000)</td>
<td>2.5</td>
<td>no</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Benzo[a]anthracene</td>
<td>SAT (118)</td>
<td>5.9</td>
<td>no</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Benzo(g,h,i)perylene</td>
<td>SAT (11,500)</td>
<td>2.6</td>
<td>no</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Benzo[a]pyrene</td>
<td>1.8</td>
<td>8.7</td>
<td>yes</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1.1</td>
</tr>
<tr>
<td>Benzo[b]fluoranthene</td>
<td>SAT (18)</td>
<td>9.6</td>
<td>no</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Benzo[k]fluoranthene</td>
<td>SAT (18)</td>
<td>3.6</td>
<td>no</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Chrysene</td>
<td>SAT (180)</td>
<td>3.0</td>
<td>no</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Dibenz[a,h]anthracene</td>
<td>SAT (5.3)</td>
<td>ND</td>
<td>no</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>SAT (11,500)</td>
<td>7.7</td>
<td>no</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Fluorene</td>
<td>SAT (11,500)</td>
<td>ND</td>
<td>no</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Indeno[1,2,3-cd]pyrene</td>
<td>SAT (18)</td>
<td>5.2</td>
<td>no</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>SAT (11,500)</td>
<td>ND</td>
<td>no</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>SAT (86,000)</td>
<td>9.3</td>
<td>no</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Pyrene</td>
<td>SAT (8,600)</td>
<td>11</td>
<td>no</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Metals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>206</td>
<td>51</td>
<td>no</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Arsenic</td>
<td>24</td>
<td>247</td>
<td>yes</td>
<td>9</td>
<td>3</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>Barium</td>
<td>4,380</td>
<td>5,250</td>
<td>yes</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>298</td>
</tr>
<tr>
<td>Beryllium</td>
<td>10</td>
<td>0.99</td>
<td>no</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Cadmium</td>
<td>90</td>
<td>4.3</td>
<td>no</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Chromium, trivalent</td>
<td>515,707</td>
<td>1,560</td>
<td>no</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>
TABLE B-4

COMPARISON OF SITE DATA AND ITLs FOR NON-INTRUSIVE POPULATIONS

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Lowest Non-Intrusive Population ITL (mg/kg)</th>
<th>Maximum Surface Soil Concentration (mg/kg)</th>
<th>Maximum Concentration Exceeds ITL</th>
<th>Number of Surface Soil Exceedances</th>
<th>Number of Covered Surface Soil Exceedances</th>
<th>Number of Exposed Surface Soil Exceedances</th>
<th>95% UCL Concentration in Surface Soil (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromium, hexavalent</td>
<td>2.6</td>
<td>1.0</td>
<td>no</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Cobalt</td>
<td>9.073</td>
<td>117</td>
<td>no</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Copper</td>
<td>19,081</td>
<td>639</td>
<td>no</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Lead</td>
<td>2,259</td>
<td>2,670</td>
<td>yes</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>293</td>
</tr>
<tr>
<td>Mercury</td>
<td>44</td>
<td>8.9</td>
<td>no</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>2,579</td>
<td>5.6</td>
<td>no</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Nickel</td>
<td>1,478</td>
<td>2,650</td>
<td>yes</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>308</td>
</tr>
<tr>
<td>Selenium</td>
<td>2,379</td>
<td>2.90</td>
<td>no</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Silver</td>
<td>2,379</td>
<td>4.6</td>
<td>no</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Thallium</td>
<td>41</td>
<td>2.6</td>
<td>no</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Vanadium</td>
<td>3,610</td>
<td>164</td>
<td>no</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Zinc</td>
<td>154,712</td>
<td>907</td>
<td>no</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Petroleum Hydrocarbons							

TPH-Gasoline	SAT (18,800)	1.3	no	NA	NA	NA	
TPH-Diesel	SAT (174,000)	2,700	no	NA	NA	NA	
TPH-Residual	SAT (1,380,000)	3,200	no	NA	NA	NA	

NA = not applicable

* Concentration in exposed and covered surface soil.

* The ITL indicated in parentheses represents an ITL that is greater than the soil saturation limit for that compound. The ITL represents a conservative, health-protective estimate of the concentration of chemical that can be present in the soil without exceeding the target risk level.
APPENDIX C

Inspection/Monitoring Sample Form
Reporting Checklist

<table>
<thead>
<tr>
<th>Period of Development</th>
<th>Risk Management Measure</th>
<th>Reporting Requirement</th>
</tr>
</thead>
</table>
| **Pre-Development** | 1. Access Restriction Measures
 | a) Fences
 | b) Asphalt/Concrete Cover
 | 2. Monitoring of Soil Stockpiles | Annual report to RWQCB and SFDPH pursuant to Section 3.2(v) and Section 3.2 (vi). |
| **During Development** | 1. Dust Control Measures
 | 2. Dust Monitoring
 | 3. Control of Off-site Runoff: Storm Water Pollution Prevention Plan
 | 4. Management of Soil Stockpiles
 | 5. Protocols to Manage/Control the Identification and/or Release of Unknown Contaminants from Underground Structures or USTs | Prior to Commencement of Development
 | - Submit dust monitoring notification to RWQCB and SFDPH pursuant to Section 4.3.1.
 | - Submit EHASP to RWQCB pursuant to Section 4.3.8
 | - Notification to the RWQCB prior to initiation of development in the Freeway Product Area, pursuant to Section 4.4.2 (i).
 | - Submit site-specific SWPPP to RWQCB pursuant to Section 4.3.3
 | **During Development**
 | - Notification to RWQCB and SFDPH if daily average dust levels exceed the dust monitoring target concentration, pursuant to Section 4.3.2.2.7.
 | - Notification to RWQCB and SFDPH of the identification of unknown underground structures and unknown contaminants pursuant to Section 4.3.5.6.
 | - Annual report to RWQCB and SFDPH documenting inspections of soil stockpiles pursuant to Section 4.3.5.2.4.
 | - Quarterly status report to RWQCB and SFDPH during development pursuant to Section 4.3.9.
 | **Conclusion of Development**
 | - Completion letter regarding cover submitted to the RWQCB and SFDPH pursuant to Section 4.3.10. |
| **Post Development** | 1. Cover
 | a) Asphalt/Concrete
 | b) Landscaping
 | 2. No Single Family Homes
 | 3. No Use of Groundwater
 | 4. Subsurface Activities Conducted in Compliance with Health and Safety Protocols | Annual report submitted to RWQCB and SFDPH pursuant to Section 5.3.5. |
INSPECTION/MONITORING SAMPLE FORM:
LONG-TERM MONITORING AFTER DEVELOPMENT IS COMPLETE

Parcel ID: ______________________________________

Owner: ______________________________________

Individual Conducting Inspection: _______________________

Date of Inspection: _______________________

1) LANDSCAPED AREAS

Description of Condition:

__

__

__

Description of Repairs/Areas Requiring Repairs:

__

__

__

__

Date of Repair:

__

__

__

2) ASPHALT AND/OR CONCRETE COVER

Description of Condition:

__

__

__

__
Description of Repairs/Areas Requiring Repairs:

__

__

__

Date of Repair:

__

__

__

3) **ARE SINGLE FAMILY RESIDENCES PRESENT?**

 Yes ☐ No ☐

Comment:__

4) **CONFIRMATION THAT GROUND WATER USE IS NOT OCCURRING**

 Yes ☐ No ☐

Comment:__

5) **CONFIRMATION THAT SUBSURFACE ACTIVITIES CONDUCTED IN COMPLIANCE WITH HEALTH AND SAFETY PROTOCOLS**

 Yes ☐ No ☐

Comment:__

* The items provided in this form are intended to be examples only; it is the Owner's responsibility to determine whether other items, categories, or types of descriptions are relevant and should be included in the annual submittal to the RWQCB.
INSPECTION/MONITORING SAMPLE FORM:
PRIOR TO DEVELOPMENT

Parcel ID: __

Owner: __

Individual Conducting Inspection: ______________________

Date of Inspection: ________________________________

1) FENCES

Description of Condition:
__
__
__
__

Description of Repairs/Areas Requiring Repairs:
__
__
__
__

Date of Repair: ______________________________________
__
__
__

2) ASPHALT AND/OR CONCRETE COVER

Description of Condition:
__
__
__
Description of Repairs/Areas Requiring Repairs:

Date of Repair:

3) SOIL STOCKPILES

Description of Condition:

Description of Repairs/Areas Requiring Repairs:

Date of Repair:

* The items provided in this form are intended to be examples only; it is the Owner's responsibility to determine whether other items, categories, or types of descriptions are relevant and should be included in the annual submittal to the RWQCB.
APPENDIX D

Soil Reuse Within RMP Area
Mr. Jim Adams
Catellus Development Corporation
201 Mission Street, 2nd Floor
San Francisco, CA 94105

Date: February 26, 1998
File: 3880044
2169.6035

Subject: ENVIRON's Proposed Soil Reuse
Mission Bay Project Area
San Francisco, California

Dear Mr. Adams,

Regional Board Staff have reviewed ENVIRON's proposed soil reuse for the Mission Bay Project Area and have received comments from Department of Toxic Substances Control (DTSC) as well as from Elaine Warren, Deputy City Attorney for the City and County of San Francisco. Board Staff held an advisory meeting under the A2061 process regarding the issue of reuse of soils for the Mission Bay Project Area (Site) which were or will be generated at the site during redevelopment. Board Staff and DTSC have determined that such soil may be reused on site without triggering hazardous waste regulatory requirements. DTSC's approval was addressed in a December 10, 1997 letter to our staff.

Based on this information, Regional Board Staff, along with DTSC, concur that reuse of soils in the Mission Bay Project Area is acceptable if conducted in accordance with Risk Management Plans (RMPs) that specify soil management procedures for the project. RMPs are to be prepared prior to development of the Project Area and submitted for review and approval by the RWQCB prior to implementation.

This letter is not intended as a substitute for Catellus' compliance with the Maher Ordinance (San Francisco Public Works Code, Article 20, Section 1090 et seq.). If you have any questions, please contact Mr. Vic Pal at (510) 285-0687.

Sincerely,

Steve Morse
Chief, Toxics Clean-Up Division

cc: Doug Simpson, Catellus
✓ Phil Fitzwater, ENVIRON
Elaine Warren, City Attorney
Deborah Schmali, Landels Ripley & Diamond
Stephanie Cushing, DPH
Janet Naito, DTSC
December 10, 1997

Mr. Steve Morse
Regional Water Quality Control Board
2101 Webster Street, Suite 500
Oakland, California 94612

Dear Mr. Morse:

SOIL REUSE WITHIN THE MISSION BAY PROJECT

The Department of Toxic Substances Control (DTSC) has completed its review of Environ's request to manage soils in the Mission Bay Project Area including the current stockpiled areas as an "area of contamination". Environ submitted information on both November 19 and December 3, 1997 as part of this demonstration. Based on an evaluation of this information, DTSC agrees that the "area of contamination" for soil management purposes can be applied for this Project.

If you have any questions, please contact me at (510) 540-3343.

Sincerely,

[Signature]

Barbara J. Cook, P.E., Chief
Northern California - Coastal
Cleanup Operations Branch

cc: Margaret Peischl
Environ
5820 Shellmound Street, Suite 700
Emeryville, California 94608
APPENDIX E

Health-Based Site-Specific Target Levels (SSTLs) for Volatile Constituents
APPENDIX E
Health-Based Site-Specific Target Levels (SSTLs) for Volatile Constituents

LIST OF TABLES

Table E-1: Soil Site-Specific Target Levels Protective of Carcinogenic Effects (mg/kg), RMP Area
Table E-2: Soil Site-Specific Target Levels Protective of Noncarcinogenic Effects (mg/kg), RMP Area
Table E-3: Ground Water Site-Specific Target Levels Protective of Carcinogenic Effects (mg/L), RMP Area
Table E-4: Ground Water Site-Specific Target Levels Protective of Noncarcinogenic Effects (mg/L), RMP Area
TABLE E-1: Soil Site-Specific Target Levels Protective of Carcinogenic Effects (µg/kg)

RMP Area
Catellus Mission Bay
San Francisco, California

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Off-Site Resident Age-Adjusted N/A</th>
<th>Off-Site Commercial Worker N/A</th>
<th>On-Site Commercial Worker N/A</th>
<th>On-Site Park Visitor Age-Adjusted N/A</th>
<th>On-Site Resident Age-Adjusted N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPH-Gasoline</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>TPH-Diesel</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>TPH-Motor Oil</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>1,1,1-Trichlorothane</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>1,1,2-Trichloro-1,2,2-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trichloroethane</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>SAT (1,100)b</td>
<td>SAT (3,700)b</td>
<td>SAT (1,400)b</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>1,2-Dichloroethylene (cis)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>1,2-Dichloroethylene (trans)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2-Butanone (MEK)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Acetone</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Benzene</td>
<td>63</td>
<td>210</td>
<td>77</td>
<td>220</td>
<td>26</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Chloroform</td>
<td>340</td>
<td>1,100</td>
<td>410</td>
<td>1,200</td>
<td>140</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>m & p-Xylene</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>1,900</td>
<td>SAT (6,200)b</td>
<td>2,200</td>
<td>SAT (6,600)b</td>
<td>780</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Styrene</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Tetrachloroethylene (PCE)</td>
<td>SAT (300)b</td>
<td>SAT (970)b</td>
<td>SAT (360)b</td>
<td>SAT (1,003)b</td>
<td>SAT (120)b</td>
</tr>
<tr>
<td>Toluene</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Trichloroethylene (TCE)</td>
<td>SAT (630)b</td>
<td>SAT (2,100)b</td>
<td>SAT (760)b</td>
<td>SAT (2,200)b</td>
<td>250</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>25</td>
<td>75</td>
<td>28</td>
<td>81</td>
<td>9.5</td>
</tr>
</tbody>
</table>

N/A = not applicable; chemical is not considered to be a carcinogen.

SAT = The calculated SSTL (i.e., the soil concentration which corresponds to the target risk levels used in the evaluation) exceeds the soil saturation limit for that compound.

* The SSTL indicated in parentheses represents an SSTL that is greater than the soil saturation limit for that compound. The SSTL represents a conservative, health-protective estimate of the concentration of chemical that can be present in the soil without exceeding the target risk level, and has been provided in order to estimate the cumulative risk associated with the presence of multiple chemicals.
<table>
<thead>
<tr>
<th>Chemical</th>
<th>SAT (34,000)b</th>
<th>SAT (2,500)b</th>
<th>SAT (40,000)b</th>
<th>SAT (15,000)b</th>
<th>SAT (36,000)b</th>
<th>SAT (10,000)b</th>
<th>SAT (14,000)b</th>
<th>SAT (1,200)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPH-Isomeric</td>
<td>130,000b</td>
<td>68,000b</td>
<td>430,000b</td>
<td>160,000b</td>
<td>692,000b</td>
<td>240,000b</td>
<td>150,000b</td>
<td>28,000b</td>
</tr>
<tr>
<td>TPH-Motor Oil</td>
<td>5,800,000b</td>
<td>1,900,000b</td>
<td>7,420,000b</td>
<td>2,720,000b</td>
<td>16,000,000b</td>
<td>6,700,000b</td>
<td>2,300,000b</td>
<td>7,700,000b</td>
</tr>
<tr>
<td>1,1-Trichloroethane</td>
<td>180,000b</td>
<td>15,000b</td>
<td>210,000b</td>
<td>77,000b</td>
<td>190,000b</td>
<td>54,000b</td>
<td>24,000b</td>
<td>6,300b</td>
</tr>
<tr>
<td>1,1,2-Trichloro-1,2,2-trifluoroethane</td>
<td>(19,000,000)b</td>
<td>(1,600,000)b</td>
<td>(22,000,000)b</td>
<td>(8,000,000)b</td>
<td>(20,000,000)b</td>
<td>(5,600,000)b</td>
<td>(7,700,000)b</td>
<td>(6,600,000)b</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>64,000b</td>
<td>8,500b</td>
<td>25,000b</td>
<td>28,000b</td>
<td>67,000b</td>
<td>19,000b</td>
<td>26,000b</td>
<td>2,300b</td>
</tr>
<tr>
<td>1,2-Dichloroethane (cis)</td>
<td>6,300b</td>
<td>3,000b</td>
<td>7,400b</td>
<td>2,700b</td>
<td>6,600b</td>
<td>1,900b</td>
<td>2,800b</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane (trans)</td>
<td>13,000b</td>
<td>1,100b</td>
<td>15,000b</td>
<td>5,500b</td>
<td>13,000b</td>
<td>3,800b</td>
<td>5,200b</td>
<td>450b</td>
</tr>
<tr>
<td>2-Bromobenzene (MEK)</td>
<td>1,900,000b</td>
<td>180,000b</td>
<td>2,400,000b</td>
<td>800,000b</td>
<td>100,000b</td>
<td>520,000b</td>
<td>770,000b</td>
<td>73,000b</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>4,300b</td>
<td>4,300b</td>
<td>1,300b</td>
<td>1,300b</td>
<td>1,800b</td>
<td>1,500b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>190,000b</td>
<td>1,100b</td>
<td>190,000b</td>
<td>1,100b</td>
<td>470b</td>
<td>110b</td>
<td>330b</td>
<td>38b</td>
</tr>
<tr>
<td>Benzene</td>
<td>130,000b</td>
<td>11,000b</td>
<td>130,000b</td>
<td>54,000b</td>
<td>130,000b</td>
<td>38,000b</td>
<td>52,000b</td>
<td>6,400b</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>13,000b</td>
<td>1,100b</td>
<td>13,000b</td>
<td>5,500b</td>
<td>13,000b</td>
<td>5,500b</td>
<td>520,000b</td>
<td>450,000b</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>13,000b</td>
<td>1,100b</td>
<td>13,000b</td>
<td>5,500b</td>
<td>13,000b</td>
<td>5,500b</td>
<td>38,000b</td>
<td>38,000b</td>
</tr>
<tr>
<td>Chloroform</td>
<td>6,500b</td>
<td>550b</td>
<td>2,800b</td>
<td>2,800b</td>
<td>2,800b</td>
<td>2,800b</td>
<td>2,800b</td>
<td>2,800b</td>
</tr>
<tr>
<td>Ethylene</td>
<td>180,000b</td>
<td>16,000b</td>
<td>180,000b</td>
<td>16,000b</td>
<td>180,000b</td>
<td>16,000b</td>
<td>180,000b</td>
<td>16,000b</td>
</tr>
<tr>
<td>m & p-Xylene(s)</td>
<td>3,000,000b</td>
<td>3,000,000b</td>
<td>3,000,000b</td>
<td>3,000,000b</td>
<td>3,000,000b</td>
<td>3,000,000b</td>
<td>3,000,000b</td>
<td>3,000,000b</td>
</tr>
<tr>
<td>Methyl chloride</td>
<td>1,300,000b</td>
<td>1,300,000b</td>
<td>1,300,000b</td>
<td>1,300,000b</td>
<td>1,300,000b</td>
<td>1,300,000b</td>
<td>1,300,000b</td>
<td>1,300,000b</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>1,300,000b</td>
<td>1,300,000b</td>
<td>1,300,000b</td>
<td>1,300,000b</td>
<td>1,300,000b</td>
<td>1,300,000b</td>
<td>1,300,000b</td>
<td>1,300,000b</td>
</tr>
<tr>
<td>Styrene</td>
<td>190,000b</td>
<td>19,000b</td>
<td>220,000b</td>
<td>80,000b</td>
<td>210,000b</td>
<td>87,000b</td>
<td>78,000b</td>
<td>7,900b</td>
</tr>
<tr>
<td>Tetrachloroethylene (PCB)</td>
<td>6,200b</td>
<td>540b</td>
<td>2,700b</td>
<td>2,700b</td>
<td>2,700b</td>
<td>2,700b</td>
<td>2,700b</td>
<td>2,700b</td>
</tr>
<tr>
<td>Toluene</td>
<td>72,000b</td>
<td>2,000b</td>
<td>85,000b</td>
<td>31,000b</td>
<td>76,000b</td>
<td>30,000b</td>
<td>30,000b</td>
<td>30,000b</td>
</tr>
<tr>
<td>Trichloroethylene (TCE)</td>
<td>4,600b</td>
<td>400b</td>
<td>2,800b</td>
<td>2,800b</td>
<td>2,800b</td>
<td>2,800b</td>
<td>2,800b</td>
<td>2,800b</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>190,000b</td>
<td>16,000b</td>
<td>220,000b</td>
<td>80,000b</td>
<td>210,000b</td>
<td>87,000b</td>
<td>78,000b</td>
<td>7,900b</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

N/A = not applicable; an RfD for vinyl chloride has not been established by CalEPA or USEPA
SAT = The calculated SSSL (i.e., the soil concentration which corresponds to the target risk levels used in the evaluation) exceeds the soil saturation limit for that compound.

b = The SSSL indicated in parentheses represents an SSSL that is greater than the target risk levels used for that compound. The SSSL represents a conservative, health-protective estimate of the concentration of chemical that can be present in the soil without exceeding the target risk level, and has been provided in order to estimate the cumulative risk associated with the presence of multiple chemicals.
TABLE E-3: Ground Water Site-Specific Target Levels Protective of Carcinogenic Effects (mg/L)
RMP Area
Cellulus Mission Bay
San Francisco, California

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Off-Site Resident Age-Adjusted</th>
<th>Off-Site Commercial Worker</th>
<th>On-Site Commercial Worker</th>
<th>On-Site Park Visitor Age-Adjusted</th>
<th>On-Site Resident Age-Adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPH-Gasoline</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>TPH-Diesel</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>TPH-Motor Oil</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>1,1,2-Trichloro-1,2,2-trifluoroethane</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td>120</td>
<td>260</td>
<td>96</td>
<td>960</td>
<td>50</td>
</tr>
<tr>
<td>1,2-Dichloroethylene (cis)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>1,2-Dichloroethylene (trans)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2-Butanone (MEK)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Acetone</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Benzene</td>
<td>6</td>
<td>13</td>
<td>5</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Chloroform</td>
<td>51</td>
<td>129</td>
<td>45</td>
<td>450</td>
<td>24</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>m & p-Xylene(s)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>460</td>
<td>980</td>
<td>360</td>
<td>3,600</td>
<td>190</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Styrene</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Tetrachloroethylene (PCE)</td>
<td>7</td>
<td>14</td>
<td>5</td>
<td>52</td>
<td>3</td>
</tr>
<tr>
<td>Toluene</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Trichloroethylene (TCE)</td>
<td>37</td>
<td>78</td>
<td>29</td>
<td>290</td>
<td>15</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>0.11</td>
<td>0.24</td>
<td>0.088</td>
<td>0.88</td>
<td>0.046</td>
</tr>
</tbody>
</table>

N/A = not applicable; chemical is not considered to be a carcinogen
<table>
<thead>
<tr>
<th>Chemical</th>
<th>Off-Site Resident</th>
<th>Off-Site Commercial</th>
<th>On-Site Commercial</th>
<th>Park Visitor</th>
<th>On-Site Resident</th>
<th>Child</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adult (mg/L)</td>
<td>Child (mg/L)</td>
<td>Adult (mg/L)</td>
<td>Child (mg/L)</td>
<td>Adult (mg/L)</td>
<td>Child</td>
</tr>
<tr>
<td>TPH-Gasoline</td>
<td>≥ $8 (170)b</td>
<td>71</td>
<td>≥ $8 (230)b</td>
<td>86</td>
<td>≥ $8 (532)b</td>
<td>68</td>
</tr>
<tr>
<td>TPH-Diesel</td>
<td>> $2 (42000)b</td>
<td>≥ $2 (26000)b</td>
<td>> $2 (60000)b</td>
<td>> $2 (32000)b</td>
<td>> $2 (19000)b</td>
<td>66</td>
</tr>
<tr>
<td>TPH-Motor Oil</td>
<td>> $2 (310000)b</td>
<td>> $2 (200000)b</td>
<td>> $2 (46000)b</td>
<td>> $2 (170000)b</td>
<td>> $2 (150000)b</td>
<td>64</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>> $2 (36000)b</td>
<td>> $2 (16000)b</td>
<td>> $2 (51000)b</td>
<td>> $2 (19000)b</td>
<td>> $2 (130000)b</td>
<td>66</td>
</tr>
<tr>
<td>1,1,2-Trichloro-1,2,2-</td>
<td></td>
<td></td>
<td>> $2 (14000)b</td>
<td>> $2 (58000)b</td>
<td>> $2 (36000)b</td>
<td>66</td>
</tr>
<tr>
<td>perchloroethylene</td>
<td>1,800</td>
<td>1,600</td>
<td>5,100</td>
<td>1,900</td>
<td>≥ $2 (48000)b</td>
<td>66</td>
</tr>
<tr>
<td>1,2-Dichloroethane (cis)</td>
<td>240</td>
<td>140</td>
<td>340</td>
<td>150</td>
<td>86</td>
<td>370</td>
</tr>
<tr>
<td>1,2-Dichloroethylene (trans)</td>
<td>370</td>
<td>250</td>
<td>790</td>
<td>290</td>
<td>2,200</td>
<td>230</td>
</tr>
<tr>
<td>2-Butoxyethanol (MEK)</td>
<td>> $2 (3200000)b</td>
<td>> $2 (1400000)b</td>
<td>> $2 (4400000)b</td>
<td>> $2 (1600000)b</td>
<td>> $2 (1100000)b</td>
<td>100</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>770</td>
<td>450</td>
<td>1,100</td>
<td>400</td>
<td>2,800</td>
<td>120</td>
</tr>
<tr>
<td>Acetone</td>
<td>> $2 (1200000)b</td>
<td>510,000</td>
<td>> $2 (1700000)b</td>
<td>610,000</td>
<td>> $2 (1200000)b</td>
<td>490,000</td>
</tr>
<tr>
<td>Benzene</td>
<td>58</td>
<td>25</td>
<td>81</td>
<td>10</td>
<td>42</td>
<td>82</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>2,100</td>
<td>920</td>
<td>> $2 (30000)b</td>
<td>1,100</td>
<td>> $2 (75000)b</td>
<td>80</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>> $2 (11000)b</td>
<td>> $2 (500)b</td>
<td>> $2 (16000)b</td>
<td>> $2 (3000)b</td>
<td>> $2 (170000)b</td>
<td>460</td>
</tr>
<tr>
<td>Chloroform</td>
<td>590</td>
<td>260</td>
<td>820</td>
<td>300</td>
<td>2,100</td>
<td>240</td>
</tr>
<tr>
<td>Ethylene</td>
<td>> $2 (35000)b</td>
<td>> $2 (41000)b</td>
<td>> $2 (310000)b</td>
<td>> $2 (140000)b</td>
<td>> $2 (170000)b</td>
<td>940</td>
</tr>
<tr>
<td>M & p-Xylene (cis)</td>
<td>> $2 (70000)b</td>
<td>> $2 (31000)b</td>
<td>> $2 (40000)b</td>
<td>> $2 (110000)b</td>
<td>> $2 (250000)b</td>
<td>13000</td>
</tr>
<tr>
<td>Styrene</td>
<td>> $2 (240000)b</td>
<td>> $2 (1200000)b</td>
<td>> $2 (340000)b</td>
<td>> $2 (1300000)b</td>
<td>> $2 (2500000)b</td>
<td>25000</td>
</tr>
<tr>
<td>Tetrachloroethylene (TCE)</td>
<td>76</td>
<td>33</td>
<td>130</td>
<td>39</td>
<td>> $2 (270)b</td>
<td>31</td>
</tr>
<tr>
<td>Toluene</td>
<td>> $2 (36000)b</td>
<td>> $2 (1600000)b</td>
<td>> $2 (380000)b</td>
<td>> $2 (1300000)b</td>
<td>> $2 (550000)b</td>
<td>150</td>
</tr>
<tr>
<td>Tetrachloroethylene (TCE)</td>
<td>150</td>
<td>63</td>
<td>200</td>
<td>75</td>
<td>> $2 (130000)b</td>
<td>60</td>
</tr>
<tr>
<td>Tetrachloroethane</td>
<td>950</td>
<td>410</td>
<td>> $2 (130000)b</td>
<td>490</td>
<td>> $2 (330000)b</td>
<td>390</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

N/A = not applicable, no RID for vinyl chloride has not been established by CalEPA or USEPA

> S = The calculated SSTL (c), the groundwater concentration which corresponds to the target risk levels used in the evaluation) exceeds the solubility limit for that compound.

b = The SSTL indicated in parentheses represents an SSTL that is greater than the maximum possible dissolved concentration. The SSTL represents a conservative, health-protective estimate of the concentration of chemical that can be present in the groundwater without exceeding the target risk level, and is used to estimate the cumulative risk associated with the presence of multiple chemicals.
APPENDIX F

Ordinance Requirements for Analyzing the Soil for Hazardous Wastes
SAN FRANCISCO PUBLIC WORKS CODE

ARTICLE 20

ANALYZING THE SOIL FOR HAZARDOUS WASTES

SEC. 1001 ANALYSIS REQUIRED.

(a) Applicants for any building permit shall comply with the requirements of (Section 1002) Article 22A of the San Francisco Public Health Code when:

1. The permit is for a construction project that involves the disturbance of at least 50 cubic yards of soil; and

2. The parcel of land or part thereof on which the construction or part thereof will occur is located

 (A) Bayward of the high-tide line as indicated on the Historic San Francisco Maps, prepared by the State of California, State Lands Commission, State Lands Division and filed with the Recorder of the City and County of San Francisco pursuant to Chapter 1333 of the 1968 Statutes, as amended by the California Legislature, for reference in conjunction with the map and description of lands, situated in the City and County of San Francisco, that were transferred to the City and County of San Francisco under Chapter 1333. The Director of Public Health shall prepare and maintain for public distribution a map that reflects this line.

 (B) In any area of the City and County of San Francisco designated by the Director of Public Health pursuant to Section (1008) 1232 of the Health Code.

(b) The Director may waive the requirements imposed by this Section if the applicant demonstrates that the property has been continuously zoned as residential under the City Planning Code since 1921, has been in residential use since that time, and the Director has no other reason to believe that the soil may contain hazardous wastes.

(c) Notwithstanding the provisions of Subsection (a), the Director has authority to require soil analysis pursuant to the provisions of this Article as part of any building permit.
application when the Director has reason to believe that hazardous wastes may be present in the soil at the construction site.))

SEC. 1004. PERMIT APPROVAL.

(a) Except for site permits issued pursuant to San Francisco Building Code Section 303(g), once the Director of Public Health has determined that the required site history, soil sampling and analyses were conducted and the report contains the information required by Section 1003, the Director of Public Works may approve or disapprove the application subject to the terms and limitations of this Section. The Director of Public Works may issue a site permit pursuant to San Francisco Building Code Section 303(g) prior to the time an applicant complies with this Article, provided, however, that the Director of Public Works shall not issue any addenda pursuant to Building Code Section 303(g), except addenda necessary to carry out the soil sampling or site mitigation measures required by this Article, until the applicant has complied with all applicable provisions of this Article. The holder of a site permit and any addenda necessary to comply with this Article shall proceed with approved addenda work at his own risk, without assurance that approvals for the remaining addenda or for the entire building will be granted.

(b) If the soil sampling and analysis report indicates that there are no hazardous wastes present in the soil, the Director of Public Health shall provide the applicant and the Director of Public Works with written notification that the applicant has complied with the requirements of this Article. The Director of Public Works may thereafter approve or disapprove the building permit application.

(b) If the soil sampling and analysis report indicates that the site is listed on the National Priorities List or the list of hazardous substances release sites published by the California Department of Health Services, the project applicant shall provide to the Director of Public Health certification or verification from the appropriate federal or state agency that any site mitigation required by the federal or state agency has been completed and complete the certification procedure set forth in Section 1005. After receipt of the certification required by Section 1005, the Director of Public Health shall provide the applicant and the Director of Public Works with written notification that the applicant has
complied with the requirements of this Article. Thereafter, the Director of Public Works may approve or disapprove a building permit.

(c) Unless Subsection (b) is applicable, if the soil sampling and analysis report indicates that hazardous wastes are present in the soil, the applicant shall do the following before the Director of Public Works may approve or disapprove the building permit application:

1. Submit a site mitigation report prepared by a qualified person to the Director of Public Works and the Director of Public Health.

A. For the purposes of this Section, a qualified person is defined as one or more of the following who is registered or certified by the State of California: soil engineer, civil engineer, chemical engineer, engineering geologist, geologist, hydrogeologist, Industrial hygienist or environmental assessor.

B. The site mitigation report shall contain the following information:

i. A determination by the qualified person as to whether the hazardous wastes in the soil are causing or are likely to cause significant environmental or health and safety risks, and if so, recommended measures that will mitigate the significant environmental or health and safety risks caused or likely to be caused by the presence of the hazardous waste in the soil. If the report recommends mitigation measures it shall identify any soil sampling and analysis that it recommends the project applicant conduct following completion of the mitigation measures to verify that mitigation is complete.

ii. A statement signed by the person who prepared the report certifying that the person the is a qualified person within the meaning of this Section and that in his or her judgment either no mitigation is required or the mitigation measures identified, if completed, will mitigate the significant environmental or health and safety risks caused by or likely to be caused by the hazardous wastes in the soil.
2. Complete the site mitigation measures identified by the qualified person in the site mitigation report. The Director of Public Works may issue any permits or addenda to site permits necessary for the applicant to carry out the site mitigation measures; and

3. Complete the certification procedure set forth in Section 1005. After receipt of the certification required by Section 1005, the Director of Public Health shall provide the applicant and the Director of Public Works with written notification that the applicant has complied with the requirements of this Article.

(d) For the purposes of completing the requirements of this Article, the time limitations set forth in Section 303(a)1.B. of the San Francisco Building Code do not apply.
SAN FRANCISCO HEALTH CODE

ARTICLE 22A

ANALYZING SOILS FOR HAZARDOUS WASTE

SEC. 1220. DEFINITIONS.
In addition to the general definitions applicable to this Code, whenever used in this Article, the following terms shall have the meanings set forth below:

(a) "Applicant" means a person applying for any building permit as specified by Section 106.1 of the San Francisco Building Code.

(b) "Certified laboratory" means a laboratory certified by the California Department of Health Services, pursuant to the provisions of Section 25198 of the California Health and Safety Code, for analyzing samples for the presence of hazardous waste.

(c) "Director" means the Director of the San Francisco Department of Public Health or the Director's designee.

(d) "Director of Building Inspection" means the Director of the Department of Building Inspection of the City and County of San Francisco.

(e) "Hazardous waste" means any substance that meets the definition of hazardous waste in Section 25117 of the California Health and Safety Code or Appendix X of Division 4.5, Chapter 10, Article 5 of Title 22 California Administrative Code.

SEC. 1221. APPLICABILITY OF ARTICLE.
Pursuant to Section 1001 of the San Francisco Public Works Code, an Applicant shall comply with this Article.

SEC. 1222. WAIVER OF REQUIREMENTS FOR COMPLIANCE.
Director may waive the requirements imposed by this Article if the Applicant demonstrates that the property has been continuously zoned as residential under the City Planning Code since 1921, has been in residential use since that time, and no evidence has been presented to create a reasonable belief that the soil may contain hazardous wastes. The Director shall provide the
Applicant and the Director of Building inspection with written notification that the requirements of this Article have been waived.

SEC. 1223. DIRECTOR'S DISCRETIONARY AUTHORITY TO REQUIRE COMPLIANCE.

In addition to those areas defined pursuant to Section 1221, the Director has authority to require soil analysis pursuant to the provisions of this Article as part of any building permit application when the Director has reason to believe that hazardous wastes may be present in the soil at the property.

SEC. 1224. SITE HISTORY.

The Applicant shall provide to the Director a site history for the property prepared by an individual with the requisite training and experience described in regulations adopted pursuant to Section 1232. The site history shall contain a statement indicating whether the property is listed on the National Priorities List, published by the United States Environmental Protection Agency pursuant to the federal Comprehensive Environmental Response Compensation and Liability Act, 42 U.S.C. Section 9604(c)(3) or listed as a hazardous substance release site by the California Department of Toxic Substances Control or the State Water Resources Control Board pursuant to the California Hazardous Substances Account Act, Health and Safety Code Section 25356. The applicant shall file the site history with the Director and the certified laboratory.

SEC. 1225. SOIL SAMPLING AND ANALYSIS.

(a) **Analysis of Sampled Soil.** The Applicant shall cause a professional geologist, civil engineer, or engineering geologist who is registered or certified by the State of California, or a certified laboratory to take samples of the soil on the property to determine the presence of hazardous wastes in the soil. The following types of analyses shall be conducted, unless an alternative proposal is approved by the Director:

(1) inorganic persistent and bioaccumulative toxic substances as listed in Section 66261.24(a)(2)(A) of Title 22 of the California Administrative Code;
(2) volatile organic toxic pollutants as listed in 40 Code of Federal Regulations, 122, Appendix D, Table II;
(3) PCBs;
(4) pH levels;
(5) cyanides;
(6) methane and other flammable gases;
(7) total petroleum hydrocarbons;
(8) semi-volatile compounds;
(9) hazardous wastes designated by the Director pursuant to Section 1232 and;
(10) any other hazardous waste that either the Director or the certified laboratory, after an examination of the site history, has reason to conclude may be present on, the property. The Director shall make any such determination within 30 days of filing by the applicant of the site history.

(b) **Procedures for Soil Sampling.** Soil sampling shall be conducted in accordance with procedures for sampling soils approved by the California Department of Toxic Substances Control or the State Water Resources Control Board and the San Francisco Bay Regional Water Quality Control Board.

(c) **Testing of Sampled Soil.** Samples shall be analyzed by a certified laboratory in accordance with methods for analyzing samples for the presence of hazardous wastes approved by the California Department of Toxic Substances Control or the State Water Resources Control Board and the San Francisco Bay Regional Water Quality Control Board.

SEC. 1226. SOIL ANALYSIS REPORT.

(a) **Contents.** The Applicant shall submit a soil analysis report prepared by the persons conducting the soil sampling and analysis to the Director, the California Department of Toxic Substances Control, the San Francisco Bay Regional Water Quality Control Board and to other agencies as directed by the Director. The report shall include the following information:
(1) The names and addresses of the persons and the certified laboratory that conducted the soil sampling, the soil analysis and prepared the report:

(2) An explanation of the sampling and testing methodology;

(3) The results of the soil analyses;

(4) Whether any of the analyses conducted indicate the presence of hazardous wastes and, for each, the level detected and the state and federal minimum standards, if any:

(5) The state and federal agencies to which the presence of the hazardous wastes has been reported and the date of the report;

(6) A statement that the certified laboratory, after examination of the site history, has no reason to conclude that hazardous wastes other than those listed in Section 1225(a)(1) through (a)(9) were likely to be present on the property;

(b) Review by Director. The Director shall determine whether the site history, soil sampling and analyses required by this Article were conducted and whether the report required by this Section is complete. If the site history, soil sampling or analyses were not conducted or the report does not comply with the requirements of this Section, the Director shall notify the applicant in writing within 30 days of receipt of the report, indicating the reasons the report is unacceptable. A copy of the notification shall be sent to the Director of Building Inspection.

(c) No Wastes Present. If the soil sampling and analysis report indicates that there are no hazardous wastes present in the soil, the Director shall provide the Applicant and the Director of Building Inspection with written notification that the Applicant has complied with the requirements of this Article.

SEC. 1227. KNOWN HAZARDOUS WASTE SITE.

If the soil sampling and analysis report or site history indicates that the property is listed on the National Priorities List or the list of California Hazardous Substances Account Act release sites, the Applicant shall provide to the Director certification or verification from the appropriate federal or state agency that any site mitigation required by the federal or state agency has been completed and complete the certification procedure set forth in Section 1229. Certification by a
competent state or federal agency that mitigation measures have been properly completed shall constitute a conclusive determination and shall be binding upon the Director.

SEC. 1228. APPLICANT'S RESPONSIBILITY UPON DISCOVERY OF HAZARDOUS WASTES.

Unless Section 1227 is applicable, if the soil sampling and analysis report indicates that hazardous wastes are present in the soil, the Applicant shall submit a site mitigation report prepared by a qualified person to the Director.

(a) For the purposes of this section, a qualified person is defined as one or more of the following who is registered or certified by the State of California: soil engineer, civil engineer, chemical engineer, engineering geologist, geologist, hydrologist, industrial hygienist or environmental assessor.

(b) The site mitigation report shall contain the following information:

(1) A determination by the qualified person as to whether the hazardous wastes in the soil are causing or are likely to cause significant environmental or health and safety risks, and if so, recommend measures that will mitigate the significant environmental or health and safety risks caused or likely to be caused by the presence of the hazardous waste in the soil. If the report recommends mitigation measures it shall identify any soil sampling and analysis that it recommends the project applicant conduct following completion of the mitigation measures to verify that mitigation is complete.

(2) A statement signed by the person who prepared the report certifying that the person is a qualified person within the meaning of this section and that in his or her judgment either no mitigation is required or the mitigation measures identified, if completed, will mitigate the significant environmental or health and safety risks caused by or likely to be caused by the hazardous wastes in the soil.

(3) Complete the site mitigation measures identified by the qualified person in the site mitigation report, and

(4) Complete the certification required by Section 1229.
SEC. 1229. CERTIFICATION.

(a) Contents. The Applicant shall certify under penalty of perjury to the Director that:

(1) If Section 1227 is applicable, the Applicant has received certification or verification from the appropriate state or federal agency that mitigation is complete.

(2) If Section 1228 is applicable:

(A) A qualified person has determined in the site mitigation report that no hazardous wastes in the soil are causing or are likely to cause significant environmental or health and safety risks, and the qualified person recommends no mitigation measures; or

(B) The Applicant has performed all mitigation measures recommended in the site mitigation report, and has verified that mitigation is complete by conducting follow-up soil sampling and analysis, if recommended in the site mitigation report.

(b) Applicant Declarations. The certification shall state:

"The Applicant recognizes that it has a nondelegable duty to perform site mitigation; that it, and not the City, is responsible for site mitigation; that it, not the City, attests to and is responsible for the accuracy the representations made in the certification, and that it will continue to remain liable and responsible, to the extent such liability or responsibility is imposed by state and federal law, for its failure to perform the site mitigation."

SEC. 1230. NOTIFICATION TO DIRECTOR OF BUILDING INSPECTION.

After receipt of the certification required by Section 1229, the Director shall provide the Applicant and the Director of Building Inspection with written notification that the Applicant has complied with the requirements of this Article.

SEC. 1231. MAINTENANCE OF REPORT BY DIRECTOR.

The site history, soil analysis report certification and related documents shall become a part of the file maintained by the Department.
SEC. 1232. RULES AND REGULATIONS.

(a) Adoption of Rules. The Director may adopt, and may thereafter amend, rules, regulations and guidelines that the Director deems necessary to implement the provisions of this ordinance. For the purposes of this Article, a public hearing before the Health Commission shall be held prior to the adoption or any amendment of the rules, regulations and guidelines recommended for implementation. In addition to notices required by law, the Director shall send written notice, at least 15 days prior to the hearing, to any interested party who sends a written request to the Director for notice of hearings related to the adoption of rules, regulations and guidelines pursuant to this Section.

In developing such regulations, the Director shall consider, inter alia, state and federal statutes and regulations pertaining to hazardous wastes with the purpose of coordinating local regulations with them.

(b) Guidelines for Regulations. Rules, regulations and guidelines may address among others, the following subjects:

(1) Minimum standards for acceptable site histories. The minimum standards shall be designed to assist interested persons including, but not limited to, the Director of Building inspection, other state and local public agencies and certified testing laboratories, to evaluate whether analyses, other than those required by Section 1225(a)(1) through (a)(9), must be conducted to detect the presence in the soil of hazardous wastes and to determine what analyses are appropriate.

(2) Minimum education and experience requirements for the persons who prepare site histories pursuant to Section 1224. In making this determination, the Director shall consider relevant those academic disciplines and practical experience which would qualify an individual to evaluate a property in San Francisco and identify prior uses made of the property that may be relevant in determining whether there are hazardous wastes in the soil and what analyses, if any, are appropriate to identify them.
(3) Precautionary measures to minimize long-term exposure to hazardous wastes that cannot be removed or are not required to be removed by the site mitigation plan.

(4) Designation of areas. Designation of areas in the City, in addition to the area described in Section 1001 of the San Francisco Public Works Code, where the Director has reason to believe that the soils may contain hazardous wastes and the designation of the analyses specified in Section 1225 that shall be conducted in each area.

(5) Designation of additional hazardous wastes. The designation of additional hazardous wastes, other than those listed in Section 1225(a)(1) through (a)(9), for which analyses must be conducted. The designation shall be based on a determination by the Director that there is a reasonable basis to conclude that such other hazardous wastes may be in the soil. The designation may be made applicable to a specified area or areas of the City or city-wide as determined by the Director.

(5) Waiver from Requirements for Analyses. The exclusion of hazardous wastes from the analysis requirements set forth in Section 1225 upon a determination that the hazardous waste does not pose a significant present or potential hazard to human health and safety or to the environment.

SEC. 1233. NOTIFICATION TO BUYER.

The Director shall prepare and maintain to, public distribution a summary of the requirements of this Article. The seller or the seller’s agent involved in the sale or exchange of any real property located bayward of the high-tide line as indicated on the Historic San Francisco Maps as described in Article 20 of the Public Works Code and as reflected on the map prepared and maintained for public distribution by the Director and in those areas designated by the Director pursuant to section 1223 shall provide a copy of the summary to the buyer or buyers and shall obtain a written receipt from the buyer or buyers acknowledging receipt of the summary. Failure to give notice as required by this section shall not excuse or exempt the buyer of the property from compliance with the requirements of this Article.
SEC. 1234 NONASSUMPTION OF LIABILITY.

In undertaking to require certain building or grading permits to include soil analyses for the presence of hazardous wastes, the City and County of San Francisco is assuming an undertaking only to promote the general welfare. It is not assuming, nor is it imposing on itself or on its officers and employees, any obligation for breach of which it is liable for money damages to any person who claims that such breach proximately caused injury.

SEC. 1235. CONSTRUCTION ON CITY PROPERTY.

All departments, boards, commissions and agencies of the City and County of San Francisco that authorize construction or improvements on land under their jurisdiction under circumstances where no building or grading permit needs to be obtained pursuant to the San Francisco Building Code shall adopt rules and regulations to insure that the same site history, soil sampling, analyzing, reporting, site mitigation and certification procedures as set forth in this Article are followed. The Directors of Public Health and Building Inspection shall assist the departments, boards, commissions and agencies to insure that these requirements are met.

SEC. 1236. SEVERABILITY.

If any section, subsection, subdivision, paragraph, sentence, clause or phrase of this Article or any part thereof, is for any reason to be held unconstitutional or invalid or ineffective by any court of competent jurisdiction, such decision shall not affect the validity or effectiveness of the remaining portions of this Section or any part thereof. The Board of Supervisors hereby declares that it would have passed each section, subsection, subdivision, paragraph, sentence, clause or phrase thereof irrespective of the fact that any one or more sections, subsections, subdivisions, paragraphs, sentences, clauses or phrases be declared unconstitutional or invalid or ineffective.

SEC. 1237. FEES.

The Director is authorized to charge the following fees to defray the costs of document processing and review, consultation with applicants, and administration of this Article: (1) an initial fee of $390, payable to the Department, upon filing a site history report with the Department; and (2) an additional fee of $130 per hour for document processing and review and
applicant consultation exceeding three hours or portion thereof, payable to the Department, upon filing of the certification required pursuant to Section 1229.
APPENDIX G:

Conceptual Site Model for Risk Evaluation:
After Development is Complete
At the start of construction, the site will be
paved by parking lots, parking
areas, streets, building foundations,
and parks (covered fill) to prevent runoff from
contacting chemicals present at site. As such,
the water runoff does not represent
processes through which chemicals
are released.

2. Ground water beneath the site is not and will not
be used as a source of drinking water. It is not
suitable for such uses due to high Total Dissolved
Solids (TDS) and minor field. Thus, residents and
commercial workers will not have any direct contact
(i.e., through either ingestion or dermal contact)
with ground water. Dermal contact with ground water
that could potentially occur during construction or
other subsurface digging activities will be controlled
through implementation of management measures
as described in Section 4.3.6.

3. Ponds and landscaped areas will be covered
by between 1.0 and 1.5 feet of fill. The
removal of the South of Channel Area will be
moved further. The implementation of the
long-term management measures described in
Section 5.3 will prevent uncontrolled
subsurface digging activities, precluding all
surfaces in which direct contact with
constituents in the soil could occur. Therefore,
these pathways are considered
incapable and are not included in the
evaluation.
EXHIBIT
RISK MANAGEMENT PLAN AREA
LEGAL DESCRIPTION

ALL THAT CERTAIN REAL PROPERTY SITUATE IN THE CITY AND COUNTY OF SAN FRANCISCO, STATE OF CALIFORNIA, MORE PARTICULARLY DESCRIBED AS FOLLOWS:

COMMENCING AT THE INTERSECTION OF THE NORTHEASTERLY LINE OF SIXTH STREET WITH THE SOUTHEASTERLY LINE OF BERRY STREET, SAID INTERSECTION HAVING A COORDINATE OF NORTH 46°8817.32, EAST 1451868.98 IN THE CALIFORNIA COORDINATE SYSTEM OF 1927, ZONE 3; THENCE ALONG SAID SOUTHEASTERLY LINE OF BERRY STREET SOUTH 46°18'07" WEST 990.05 FEET TO THE SOUTHWESTERLY LINE OF SEVENTH STREET; THENCE ALONG SAID SOUTHWESTERLY LINE OF SEVENTH STREET SOUTH 43°41'53" EAST 440.00 FEET TO THE SOUTHEASTERLY LINE OF CHANNEL STREET, AND BEING THE TRUE POINT OF BEGINNING; THENCE CONTINUING ALONG SAID SOUTHWESTERLY LINE OF SEVENTH STREET SOUTH 43°41'53" EAST 2,017.19 FEET TO THE WESTERLY LINE OF PENNSYLVANIA STREET; THENCE ALONG SAID WESTERLY LINE OF PENNSYLVANIA STREET SOUTH 3°10'56" EAST 600.92 FEET TO THE SOUTHERLY LINE OF MARIPOSA STREET; THENCE ALONG SAID SOUTHERLY LINE OF MARIPOSA STREET NORTH 86°49'04" EAST 1,690.17 FEET TO THE WESTERLY LINE OF ILLINOIS STREET; THENCE ALONG SAID WESTERLY LINE OF ILLINOIS STREET SOUTH 3°10'56" EAST 63.85 FEET; THENCE NORTH 86°49'04" EAST 80.00 FEET TO A POINT ON THE EASTERLY LINE OF ILLINOIS STREET, LAST SAID POINT BEING ON THE MISSION BAY PROJECT BOUNDARY AS DESCRIBED IN SENATE BILL 1215, FILED WITH THE STATE OF CALIFORNIA SECRETARY OF STATE ON AUGUST 4, 1997; THENCE ALONG SAID MISSION BAY PROJECT BOUNDARY THE FOLLOWING COURSES AND DISTANCES; THENCE NORTH 35°06'05" EAST 616.30 FEET; THENCE NORTHEASTERLY ALONG AN ARC OF A CURVE TO THE LEFT, TANGENT TO THE PRECEDING COURSE WITH A RADIUS OF 440.00 FEET THROUGH A CENTRAL ANGLE OF 4°39'09" AN ARC DISTANCE OF 33.72 FEET; THENCE LEAVING SAID BOUNDARY ALONG A LINE AT AN ELEVATION OF 95.00 FEET BASED ON CITY AND COUNTY OF SAN FRANCISCO DATUM PLUS 100.00 FEET, THE FOLLOWING COURSES AND DISTANCES SOUTH 71°56'38" EAST 44.73 FEET; THENCE NORTH 32°05'50" EAST 44.70 FEET; THENCE NORTH 26°06'52" EAST 167.45 FEET; THENCE NORTH 27°31'13" EAST 72.27 FEET; THENCE NORTH 1°47'26" EAST 33.63 FEET; THENCE NORTH 34°14'26" EAST 12.47 FEET; THENCE NORTH 9°57'00" EAST 38.39 FEET; THENCE NORTH 10°48'46" EAST 58.04 FEET; THENCE NORTH 17°31'11" EAST 16.19 FEET; THENCE NORTH 22°04'13" EAST 15.59 FEET; THENCE NORTH 22°29'13" EAST 29.41 FEET; THENCE SOUTH 88°21'19" EAST 17.63 FEET; THENCE NORTH 10°30'55" EAST 2.19 FEET; THENCE SOUTH 84°19'48" EAST 11.80 FEET; THENCE NORTH 2°49'59" WEST 6.90 FEET; THENCE NORTH 81°58'44" WEST 3.13 FEET; THENCE NORTH

H - 2 ENVIRON
26°32'34" EAST 3.73 FEET; THENCE NORTH 12°55'05" EAST 5.22 FEET; THENCE NORTH 3°29'34" WEST 12.18 FEET; THENCE NORTH 63°36'32" EAST 13.43 FEET; THENCE NORTH 69°38'30" WEST 12.08 FEET; THENCE NORTH 66°42'30" EAST 13.11 FEET; THENCE NORTH 23°56'57" WEST 26.75 FEET; THENCE NORTH 50°01'38" EAST 18.03 FEET; THENCE NORTH 0°58'25" WEST 8.96 FEET; THENCE NORTH 96°50'06" EAST 33.97 FEET; THENCE NORTH 45°15'40" EAST 6.62 FEET; THENCE NORTH 86°57'45" EAST 25.93 FEET; THENCE SOUTH 88°16'06" EAST 6.48 FEET; THENCE NORTH 68°59'26" EAST 6.98 FEET; THENCE NORTH 28°34'08" EAST 5.90 FEET; THENCE NORTH 4°28'33" WEST 14.98 FEET; THENCE NORTH 88°10'50" WEST 8.70 FEET; THENCE NORTH 35°12'31" WEST 34.21 FEET; THENCE NORTH 1°47'10" EAST 68.36 FEET; THENCE NORTH 3°13'27" WEST 1.50 FEET; THENCE SOUTH 86°59'17" EAST 4.95 FEET; THENCE NORTH 51°17'55" EAST 5.13 FEET; THENCE NORTH 12°03'47" EAST 17.02 FEET; THENCE NORTH 39°15'40" EAST 13.66 FEET; THENCE NORTH 13°55'33" EAST 7.34 FEET; THENCE NORTH 2°21'50" WEST 34.82 FEET; THENCE NORTH 44°30'04" WEST 1.95 FEET; THENCE SOUTH 77°15'27" WEST 8.61 FEET; THENCE NORTH 36°29'57" EAST 13.78 FEET; THENCE NORTH 8°00'48" WEST 10.39 FEET; THENCE NORTH 15°31'27" EAST 5.94 FEET; THENCE NORTH 16°07'00" WEST 6.62 FEET; THENCE NORTH 8°42'48" WEST 25.57 FEET; THENCE NORTH 35°09'08" WEST 5.88 FEET; THENCE NORTH 4°53'35" WEST 13.43 FEET; THENCE NORTH 5°57'25" WEST 21.80 FEET; THENCE NORTH 54°48'15" WEST 10.86 FEET; THENCE NORTH 11°30'22" EAST 9.78 FEET; THENCE NORTH 71°32'38" EAST 15.21 FEET; THENCE NORTH 36°27'15" EAST 16.88 FEET; THENCE NORTH 20°28'01" EAST 15.13 FEET; THENCE NORTH 34°08'38" EAST 4.15 FEET; THENCE NORTH 16°19'31" EAST 24.06 FEET; THENCE NORTH 1°17'38" EAST 12.96 FEET; THENCE NORTH 49°18'12" WEST 12.53 FEET; THENCE NORTH 5°34'11" WEST 32.72 FEET; THENCE NORTH 17°28'19" EAST 14.72 FEET; THENCE NORTH 31°17'32" EAST 84.18 FEET; THENCE NORTH 64°30'58" EAST 6.69 FEET; THENCE NORTH 16°30'04" WEST 8.67 FEET; THENCE NORTH 0°03'26" WEST 7.54 FEET; THENCE NORTH 51°04'22" WEST 6.53 FEET; THENCE NORTH 3°25'02" EAST 107.32 FEET; THENCE NORTH 14°26'49" WEST 20.21 FEET; THENCE NORTH 23°13'03" WEST 19.47 FEET; THENCE NORTH 28°16'44" WEST 13.15 FEET; THENCE NORTH 13°35'32" WEST 32.73 FEET; THENCE NORTH 25°13'56" WEST 17.78 FEET; THENCE NORTH 16°25'20" WEST 63.24 FEET; THENCE NORTH 18°11'49" WEST 117.90 FEET; THENCE NORTH 23°49'29" WEST 88.39 FEET; THENCE NORTH 10°43'24" WEST 18.66 FEET; THENCE SOUTH 87°40'13" WEST 10.65 FEET TO A POINT ON SAID MISSION BAY PROJECT BOUNDARY; THENCE ALONG SAID MISSION BAY PROJECT BOUNDARY THE FOLLOWING COURSES AND DISTANCES; THENCE NORTH 2°19'47" WEST 3.00 FEET; THENCE NORTHERLY ALONG AN ARC OF A CURVE TO THE LEFT, WITH A RADIUS OF 481.57 FEET THROUGH A CENTRAL ANGLE OF 24°30'49", AN ARC DISTANCE OF 206.04 FEET; THENCE TANGENT TO THE PRECEDING CURVE NORTH 26°50'36" WEST 402.03 FEET; THENCE NORTHERLY ALONG AN ARC OF A CURVE TO THE RIGHT, TANGENT TO THE PRECEDING CURVE WITH A RADIUS OF 236.29 FEET, THROUGH A CENTRAL ANGLE OF 9°00'04" AN ARC DISTANCE OF 37.12 FEET; THENCE TANGENT TO THE PRECEDING CURVE NORTH 17°50'32" WEST 679.08 FEET, THENCE
SOUTH 86°49'04" WEST 282.39 FEET; THENCE SOUTH 17°34'00" EAST 2.58 FEET;
THENCE SOUTH 86°49'04" WEST 397.43 FEET TO THE EASTERLY LINE OF THIRD
STREET; THENCE ALONG SAID EASTERLY LINE OF THIRD STREET NORTH 3°10'56"
WEST 1,237.57 FEET; THENCE LEAVING SAID BOUNDARY ALONG A LINE AT AN
ELEVATION OF 95.00 FEET BASED ON CITY AND COUNTY OF SAN FRANCISCO
DATUM PLUS 100.00 FEET, THE FOLLOWING COURSES AND DISTANCES; SOUTH
47°31'01" WEST 192.71 FEET; THENCE SOUTH 81°32'20" WEST 21.78 FEET; THENCE
SOUTH 53°06'40" WEST 9.15 FEET; THENCE SOUTH 19°20'03" WEST 6.56 FEET;
THENCE SOUTH 2°40'00" WEST 9.87 FEET; THENCE SOUTH 46°33'24" WEST 126.70
FEET; THENCE SOUTH 44°53'10" WEST 44.27 FEET; THENCE SOUTH 44°23'58" WEST
40.11 FEET; THENCE SOUTH 40°28'07" WEST 29.51 FEET; THENCE SOUTH 52°01'51"
WEST 14.76 FEET; THENCE SOUTH 41°11'07" WEST 14.90 FEET; THENCE SOUTH
48°42'33" WEST 63.76 FEET; THENCE SOUTH 46°33'40" WEST 132.22 FEET; THENCE
SOUTH 49°26'17" WEST 71.28 FEET; THENCE SOUTH 49°00'09" WEST 72.23 FEET;
THENCE NORTH 69°35'04" WEST 8.10 FEET; THENCE NORTH 55°15'28" WEST 8.56
FEET; THENCE SOUTH 58°59'18" WEST 81.65 FEET; THENCE SOUTH 3°20'49" EAST
35.64 FEET; THENCE SOUTH 5°59'31" WEST 19.74 FEET; THENCE SOUTH 52°36'12"
WEST 13.09 FEET; THENCE SOUTH 35°01'47" WEST 29.78 FEET; THENCE SOUTH
49°24'29" WEST 38.10 FEET; THENCE SOUTH 38°38'29" WEST 54.69 FEET; THENCE
SOUTH 49°35'04" WEST 44.46 FEET; THENCE SOUTH 33°31'22" WEST 12.43 FEET;
THENCE SOUTH 60°28'30" WEST 16.61 FEET; THENCE SOUTH 33°01'30" WEST 11.32
FEET; THENCE SOUTH 62°08'06" WEST 12.50 FEET; THENCE SOUTH 43°06'26" WEST
48.88 FEET; THENCE SOUTH 57°34'14" WEST 32.52 FEET; THENCE SOUTH 33°55'46"
WEST 25.13 FEET; THENCE SOUTH 56°45'58" WEST 16.11 FEET; THENCE SOUTH
13°24'57" WEST 11.99 FEET; THENCE SOUTH 42°25'15" WEST 14.86 FEET; THENCE
SOUTH 40°27'45" WEST 21.62 FEET; THENCE SOUTH 55°00'28" WEST 25.04 FEET;
THENCE SOUTH 41°50'15" WEST 21.78 FEET; THENCE SOUTH 78°34'37" WEST 17.05
FEET; THENCE SOUTH 22°39'15" WEST 25.26 FEET; THENCE SOUTH 47°03'39" WEST
46.71 FEET; THENCE SOUTH 62°03'27" WEST 14.13 FEET; THENCE SOUTH 36°10'39"
WEST 25.94 FEET; THENCE SOUTH 60°01'21" WEST 34.27 FEET; THENCE SOUTH
35°29'48" WEST 14.74 FEET; THENCE SOUTH 17°03'19" WEST 19.97 FEET; THENCE
SOUTH 66°03'30" WEST 20.40 FEET; THENCE SOUTH 48°16'39" WEST 41.48 FEET;
THENCE SOUTH 40°06'06" WEST 46.06 FEET; THENCE SOUTH 48°18'24" WEST 45.40
FEET; THENCE SOUTH 56°22'09" WEST 25.95 FEET; THENCE SOUTH 86°10'54" WEST
29.61 FEET; THENCE SOUTH 51°33'49" WEST 16.52 FEET; THENCE SOUTH 36°10'39"
WEST 23.65 FEET; THENCE SOUTH 47°56'30" WEST 22.00 FEET; THENCE SOUTH
16°42'56" WEST 32.86 FEET; THENCE SOUTH 49°53'08" WEST 46.50 FEET; THENCE
SOUTH 64°43'19" WEST 22.72 FEET; THENCE SOUTH 38°49'28" WEST 17.70 FEET;
THENCE SOUTH 55°21'30" WEST 18.90 FEET; THENCE SOUTH 36°38'33" WEST 30.82
FEET; THENCE SOUTH 60°53'13" WEST 15.53 FEET; THENCE SOUTH 37°04'24" WEST
28.00 FEET; THENCE SOUTH 59°22'58" WEST 28.54 FEET; THENCE SOUTH 79°23'57"
WEST 26.75 FEET; THENCE SOUTH 37°30'59" WEST 52.47 FEET; THENCE SOUTH
60°16'06" WEST 19.86 FEET; THENCE SOUTH 44°21'48" WEST 31.66 FEET; THENCE
SOUTH 73°40'32" WEST 36.15 FEET; THENCE SOUTH 76°13'42" WEST 11.90 FEET;
THENCE SOUTH 35°35'18" WEST 32.05 FEET; THENCE SOUTH 54°15'41" WEST 56.20
FEET; THENCE SOUTH 49°00'58" WEST 91.18 FEET; THENCE SOUTH 44°55'37" WEST
124.43 FEET; THENCE SOUTH 49°48'38" WEST 115.00 FEET; THENCE NORTH 89°37'27"
WEST 17.44 FEET; THENCE SOUTH 44°29'30" WEST 13.23 FEET; THENCE SOUTH
4°52'32" WEST 7.48 FEET; THENCE SOUTH 47°12'29" WEST 11.91 FEET; THENCE
SOUTH 79°30'07" WEST 9.90 FEET; THENCE SOUTH 45°14'04" WEST 31.81 FEET;
THENCE SOUTH 39°03'20" WEST 15.43 FEET; THENCE SOUTH 45°32'37" WEST 109.26
FEET; THENCE SOUTH 44°52'07" WEST 50.71 FEET; THENCE SOUTH 61°20'38" WEST
34.61 FEET; THENCE SOUTH 58°31'36" WEST 12.75 FEET; THENCE NORTH 0°00'53"
WEST 4.15 FEET; THENCE NORTH 89°09'04" WEST 23.61 FEET; THENCE SOUTH
31°13'25" WEST 27.05 FEET; THENCE SOUTH 0°50'30" EAST 21.14 FEET; THENCE
SOUTH 58°49'22" WEST 27.08 FEET; THENCE SOUTH 38°56'46" WEST 10.96 FEET;
THENCE SOUTH 69°13'10" WEST 5.41 FEET; THENCE SOUTH 46°45'13" WEST 122.22
FEET; THENCE SOUTH 12°19'48" WEST 39.73 FEET; THENCE SOUTH 33°11'37" WEST
41.19 FEET; THENCE SOUTH 55°34'32" WEST 57.25 FEET; THENCE SOUTH 76°49'34"
WEST 8.83 FEET; THENCE NORTH 24°24'30" WEST 11.97 FEET; THENCE SOUTH
62°23'18" WEST 8.84 FEET; THENCE SOUTH 32°49'40" WEST 21.47 FEET; THENCE
SOUTH 51°37'07" WEST 15.22 FEET; THENCE SOUTH 39°02'24" WEST 39.75 FEET;
THENCE SOUTH 65°25'05" WEST 10.02 FEET; THENCE NORTH 36°53'25" WEST 13.85
FEET; THENCE NORTH 13°31'40" EAST 11.45 FEET; THENCE NORTH 36°34'00" WEST
8.98 FEET; THENCE NORTH 46°19'26" WEST 15.78 FEET; THENCE NORTH 67°21'11"
WEST 12.94 FEET; THENCE SOUTH 74°36'55" WEST 2.56 FEET; THENCE NORTH
58°13'39" WEST 11.14 FEET; THENCE NORTH 46°47'58" WEST 13.08 FEET; THENCE
NORTH 45°35'16" EAST 11.63 FEET; THENCE SOUTH 67°38'55" EAST 6.25 FEET;
THENCE NORTH 24°14'41" EAST 18.22 FEET; THENCE NORTH 9°33'12" EAST 10.15
FEET; THENCE NORTH 11°27'18" EAST 9.84 FEET; THENCE NORTH 0°57'56" WEST
18.87 FEET; THENCE NORTH 12°54'14" WEST 19.09 FEET; THENCE NORTH 24°34'44"
WEST 19.91 FEET; THENCE NORTH 13°14'21" WEST 21.14 FEET; THENCE NORTH
42°55'41" WEST 7.20 FEET; THENCE NORTH 41°45'56" EAST 20.01 FEET; THENCE
NORTH 74°56'13" EAST 14.21 FEET; THENCE NORTH 53°08'45" EAST 4.62 FEET;
THENCE NORTH 9°56'25" WEST 13.99 FEET; THENCE NORTH 19°10'19" EAST 14.43
FEET; THENCE NORTH 42°16'53" EAST 16.68 FEET; THENCE NORTH 66°21'01" EAST
16.21 FEET; THENCE NORTH 40°52'55" EAST 69.82 FEET; THENCE NORTH 53°44'17"
EAST 6.03 FEET; THENCE NORTH 36°56'53" EAST 77.84 FEET; THENCE NORTH
47°21'57" EAST 335.23 FEET; THENCE NORTH 71°58'01" EAST 8.92 FEET; THENCE
NORTH 39°07'37" EAST 43.76 FEET; THENCE NORTH 52°26'00" EAST 20.39 FEET;
THENCE SOUTH 85°45'21" EAST 8.49 FEET; THENCE SOUTH 71°23'39" EAST 8.87 FEET;
THENCE NORTH 43°42'54" EAST 31.57 FEET; THENCE NORTH 44°47'29" EAST 17.42
FEET; THENCE NORTH 42°44'48" EAST 8.15 FEET; THENCE NORTH 57°25'38" EAST
34.64 FEET; THENCE NORTH 34°27'03" EAST 14.08 FEET; THENCE NORTH 52°52'36"
EAST 21.61 FEET; THENCE NORTH 77°45'57" EAST 12.78 FEET; THENCE NORTH
36°18'33" EAST 8.05 FEET; THENCE NORTH 18°54'43" EAST 11.44 FEET; THENCE

H - 5

ENVIRO
NORTH 38°25'06" EAST 43.20 FEET; THENCE NORTH 55°22'16" EAST 24.89 FEET;
THENCE NORTH 67°07'19" EAST 11.03 FEET; THENCE NORTH 51°15'46" EAST 29.41
FEET; THENCE NORTH 32°40'26" EAST 10.55 FEET; THENCE NORTH 49°40'42" EAST
37.77 FEET; THENCE NORTH 35°46'40" EAST 20.16 FEET; THENCE NORTH 9°58'30"
WEST 32.88 FEET; THENCE NORTH 33°49'31" EAST 30.54 FEET; THENCE NORTH
82°14'49" EAST 7.95 FEET; THENCE NORTH 33°42'23" EAST 14.25 FEET; THENCE
NORTH 64°30'10" EAST 19.18 FEET; THENCE NORTH 41°50'14" EAST 21.95 FEET;
THENCE NORTH 53°23'36" EAST 37.05 FEET; THENCE NORTH 36°18'34" EAST 13.95
FEET; THENCE NORTH 48°01'32" EAST 56.11 FEET; THENCE NORTH 36°28'52" EAST
14.40 FEET; THENCE NORTH 53°40'39" EAST 18.07 FEET; THENCE NORTH 42°55'30"
EAST 30.62 FEET; THENCE NORTH 48°28'55" EAST 20.09 FEET; THENCE NORTH
42°17'34" EAST 10.48 FEET; THENCE NORTH 54°11'51" EAST 18.06 FEET; THENCE
NORTH 25°38'42" EAST 9.38 FEET; THENCE NORTH 44°49'33" EAST 33.54 FEET;
THENCE NORTH 45°36'54" EAST 19.55 FEET; THENCE NORTH 45°35'02" EAST 36.23
FEET; THENCE NORTH 47°37'24" EAST 34.77 FEET; THENCE NORTH 39°23'35" EAST
21.61 FEET; THENCE NORTH 58°05'41" EAST 9.60 FEET; THENCE NORTH 41°38'15"
EAST 22.77 FEET; THENCE NORTH 70°26'20" EAST 24.06 FEET; THENCE NORTH
27°33'17" EAST 8.43 FEET; THENCE SOUTH 44°56'51" EAST 2.73 FEET; THENCE NORTH
48°50'55" EAST 8.43 FEET; THENCE NORTH 44°47'27" EAST 12.07 FEET; THENCE
NORTH 32°27'07" EAST 5.29 FEET; THENCE NORTH 40°58'16" WEST 3.31 FEET;
THENCE NORTH 46°09'25" EAST 9.33 FEET; THENCE NORTH 34°15'24" EAST 9.56 FEET;
THENCE NORTH 40°16'44" EAST 16.60 FEET; THENCE NORTH 43°59'49" EAST 6.66
FEET; THENCE NORTH 38°31'41" EAST 14.33 FEET; THENCE NORTH 45°48'04" EAST 59.81
FEET; THENCE NORTH 53°30'26" EAST 30.41 FEET; THENCE NORTH 41°57'57" EAST
11.02 FEET; THENCE NORTH 57°55'45" EAST 12.42 FEET; THENCE NORTH 37°20'03"
EAST 33.56 FEET; THENCE NORTH 53°02'30" EAST 20.38 FEET; THENCE NORTH
54°25'24" EAST 9.95 FEET; THENCE NORTH 32°51'49" EAST 9.07 FEET; THENCE NORTH
79°41'52" EAST 4.30 FEET; THENCE NORTH 39°24'23" EAST 44.62 FEET; THENCE
NORTH 56°10'24" EAST 37.31 FEET; THENCE NORTH 47°11'45" EAST 30.23 FEET;
THENCE NORTH 42°04'23" EAST 32.69 FEET; THENCE NORTH 55°29'24" EAST 24.51
FEET; THENCE NORTH 48°38'05" EAST 35.25 FEET; THENCE NORTH 42°08'03" EAST
25.96 FEET; THENCE NORTH 41°21'50" EAST 16.28 FEET; THENCE NORTH 50°44'41"
EAST 71.89 FEET; THENCE NORTH 42°22'22" EAST 28.42 FEET; THENCE NORTH
36°57'06" EAST 31.19 FEET; THENCE NORTH 1°31'35" WEST 21.33 FEET; THENCE
NORTH 35°25'57" EAST 26.19 FEET; THENCE NORTH 40°57'21" EAST 25.96 FEET;
THENCE NORTH 52°20'58" EAST 27.67 FEET; THENCE NORTH 72°06'16" EAST 26.61
FEET; THENCE NORTH 66°28'58" EAST 30.25 FEET; THENCE NORTH 58°16'00" EAST
28.21 FEET TO A POINT ON THE NORTHWESTERN LINE OF CHANNEL STREET,
EAST SAID POINT BEING ON SAID MISSION BAY PROJECT BOUNDARY; THENCE
ALONG SAID MISSION BAY PROJECT BOUNDARY THE FOLLOWING COURSES AND
DISTANCES: THENCE NORTH 46°18'07" EAST 138.75 FEET TO THE NORTHEASTERLY
LINE OF FOURTH STREET; THENCE ALONG SAID NORTHEASTERLY LINE OF
FOURTH STREET NORTH 43°41'53" WEST 240.00 FEET TO THE SOUTHEASTERLY LINE

Final copy.doc
May 11, 1999
Prepared by KCA Engineers, Inc.
ENVI - RON
H - 6
OF BERRY STREET; THENCE ALONG SAID SOUTHEASTERLY LINE OF BERRY STREET NORTH 46°18'07" EAST 825.95 FEET TO THE SOUTHWESTERLY LINE OF THIRD STREET; THENCE ALONG SAID SOUTHWESTERLY LINE OF THIRD STREET NORTH 43°41'53" WEST 392.50 FEET; THENCE LEAVING SAID SOUTHWESTERLY LINE OF THIRD STREET NORTH 46°18'07" EAST 82.50 FEET TO THE NORTHEASTERLY LINE OF THIRD STREET; THENCE ALONG SAID NORTHEASTERLY LINE OF THIRD STREET NORTH 43°41'53" WEST 357.50 FEET TO THE NORTHWESTERLY LINE OF TOWNSEND STREET; THENCE ALONG SAID NORTHWESTERLY LINE OF TOWNSEND STREET SOUTH 46°18'07" WEST 990.95 FEET TO THE SOUTHWESTERLY LINE OF FOURTH STREET; THENCE ALONG SAID SOUTHWESTERLY LINE OF FOURTH STREET SOUTH 43°41'53" EAST 357.50 FEET TO THE NORTHWESTERLY LINE OF KING STREET; THENCE ALONG SAID NORTHWESTERLY LINE OF KING STREET SOUTH 46°18'07" WEST 972.85 FEET; THENCE LEAVING SAID NORTHWESTERLY LINE OF KING STREET SOUTH 51°53'27" WEST 275.69 FEET; THENCE SOUTH 46°18'07" WEST 63.42 FEET; THENCE SOUTHWESTERLY ALONG AN ARC OF A CURVE TO THE RIGHT, TANGENT TO THE PRECEDING COURSE WITH A RADIUS OF 672.00 FEET THROUGH A CENTRAL ANGLE OF 21°46'49" AN ARC DISTANCE OF 255.45 FEET; THENCE TANGENT TO THE PRECEDING CURVE SOUTH 24°31'18" WEST 186.53 FEET TO THE NORTHEASTERLY LINE OF SIXTH STREET; THENCE ALONG SAID NORTHEASTERLY LINE OF SIXTH STREET NORTH 43°41'53" WEST 90.33 FEET; THENCE LEAVING SAID NORTHEASTERLY LINE OF SIXTH STREET SOUTH 46°18'07" WEST 82.50 FEET TO THE SOUTHWESTERLY LINE OF SIXTH STREET; THENCE ALONG SAID SOUTHWESTERLY LINE OF SIXTH STREET NORTH 43°41'53" WEST 275.00 FEET TO THE SOUTHEASTERLY LINE OF TOWNSEND STREET; THENCE ALONG SAID SOUTHEASTERLY LINE OF TOWNSEND STREET NORTH 46°18'07" EAST 82.50 FEET; THENCE LEAVING SAID SOUTHEASTERLY LINE OF TOWNSEND STREET NORTH 43°41'53" WEST 82.50 FEET TO THE NORTHWESTERLY LINE OF TOWNSEND STREET; THENCE ALONG SAID NORTHWESTERLY LINE OF TOWNSEND STREET SOUTH 46°18'07" WEST 990.06 FEET TO THE SOUTHWESTERLY LINE OF SEVENTH STREET; THENCE ALONG SAID SOUTHWESTERLY LINE OF SEVENTH STREET SOUTH 43°41'53" EAST 1,190.00 FEET TO THE TRUE POINT OF BEGINNING.

CONTAINING 13,186,836 SQUARE FEET, MORE OR LESS.

THE BEARINGS USED IN THE ABOVE DESCRIPTION ARE ON THE CALIFORNIA COORDINATE SYSTEM OF 1927, ZONE 3. MULTIPLY THE ABOVE DISTANCES BY 0.999928 TO OBTAIN GRID DISTANCES.

EXCEPTING THEREFROM THE FOLLOWING DESCRIBED PARCELS:
PARCEL ONE

COMMENCING AT THE INTERSECTION OF THE SOUTHERLY LINE OF SIXTEENTH STREET (90.00 FEET WIDE) WITH THE EASTERLY LINE OF THIRD STREET (100.00 FEET WIDE) AND CONTINUING EASTERLY ALONG THAT SOUTHERLY LINE OF SIXTEENTH STREET NORTH 86°49'04" EAST 260.00 FEET TO A POINT ON THE EASTERLY LINE OF ILLINOIS STREET (80.00 FEET WIDE), THAT POINT BEING THE NORTHWESTERLY CORNER OF PARCEL ONE AS DESCRIBED IN THE DEED TO ESPIRIT DE CORPS, A CALIFORNIA CORPORATION, RECORDED ON JULY 12, 1988, ON REEL E634 AT IMAGE 1334, DOCUMENT NO. E203992, IN THE OFFICE OF THE Recorder OF THE CITY AND COUNTY OF SAN FRANCISCO, THAT POINT ALSO BEING THE TRUE POINT OF BEGINNING OF THIS DESCRIPTION; THENCE ALONG THE NORTHERLY LINE OF THAT PARCEL ONE NORTH 86°49'04" EAST 335.00 FEET; THENCE ALONG THE EASTERLY LINE OF THAT PARCEL ONE SOUTH 14°29'32" EAST 107.08 FEET; THENCE SOUTH 3°10'56" EAST 232.00 FEET; THENCE SOUTH 26°50'57" WEST 72.77 FEET TO THE MOST EASTERLY CORNER OF PARCEL TWO AS DESCRIBED IN SAID DEED; THENCE ALONG THE EASTERLY LINE OF THAT PARCEL TWO SOUTH 26°50'57" WEST 92.41 FEET; THENCE ALONG THE SOUTHERLY LINE OF THAT PARCEL TWO SOUTH 86°49'04" WEST 273.33 FEET TO THE EASTERLY LINE OF ILLINOIS STREET; THENCE ALONG THE WESTERLY LINE OF THAT PARCEL TWO NORTH 3°10'56" WEST 80.00 FEET TO THE SOUTHWESTERNLY CORNER OF THAT PARCEL ONE; THENCE ALONG THE WESTERLY LINE OF THAT PARCEL ONE NORTH 3°10'56" WEST 400.00 FEET TO THE TRUE POINT OF BEGINNING, AND CONTAINS 3.762 ACRES OF LAND, MORE OR LESS.

PARCEL TWO

BEGINNING AT THE INTERSECTION OF THE NORTHERLY LINE OF MARIPOSA STREET (65.00 FEET WIDE) WITH THE WESTERLY LINE OF THIRD STREET (100.00 FEET WIDE); THENCE ALONG SAID WESTERLY LINE OF THIRD STREET NORTH 3°10'56" WEST 531.47 FEET; THENCE LEAVING SAID WESTERLY LINE SOUTH 86°51'05" WEST 100.00 FEET; THENCE SOUTH 3°10'56" EAST 98.49 FEET; THENCE SOUTH 86°49'04" WEST 280.00 FEET THENCE SOUTH 3°10'56" EAST 433.04 FEET TO THE NORTHERLY LINE OF MARIPOSA STREET; THENCE ALONG SAID NORTHERLY LINE NORTH 86°49'04" EAST 380.00 FEET TO THE TRUE POINT OF BEGINNING, AND CONTAINS 4.094 ACRES OF LAND, MORE OR LESS.

PARCEL THREE

COMMENCING AT A POINT ON THE SOUTHEASTERLY LINE OF EXISTING KING STREET, DISTANT THEREON N. 46°17'30" E., 138.50 FEET FROM THE INTERSECTION OF SAID SOUTHEASTERLY LINE WITH THE NORTHEASTERLY LINE OF EXISTING
SIXTH STREET; THENCE ALONG SAID SOUTHEASTERLY LINE OF EXISTING KING STREET N. 46°17'30" E., 120.29 FEET; THENCE FROM A TANGENT THAT BEARS S. 32°12'52" W., ALONG A CURVE TO THE LEFT WITH A RADIUS OF 599.00 FEET, THROUGH AN ANGLE OF 28°24'02", AN ARC LENGTH OF 296.91 FEET TO SAID NORTHEASTERLY LINE OF EXISTING SIXTH STREET; THENCE ALONG LAST SAID LINE N. 43°41'53" W., 52.89 FEET; THENCE FROM A TANGENT THAT BEARS N. 70°01'07" E., ALONG A CURVE TO THE RIGHT WITH A RADIUS OF 639.00 FEET, THROUGH AN ANGLE OF 14°40'30", AN ARC LENGTH OF 163.67 FEET TO THE POINT OF COMMENCEMENT.

CONTAINING 9,009 SQUARE FEET, MORE OR LESS.

PARCEL FOUR

COMMENCING AT A POINT ON THE SOUTHWESTERLY LINE OF EXISTING FIFTH STREET, DISTANT THEREON S. 43°42'30" E., 16.19 FEET FROM THE INTERSECTION OF SAID SOUTHWESTERLY LINE OF EXISTING FIFTH STREET WITH THE SOUTHEASTERLY LINE OF EXISTING KING STREET; THENCE ALONG SAID SOUTHWESTERLY LINE OF EXISTING FIFTH STREET S. 43°42'30" E., 41.00 FEET; THENCE S. 46°17'30" W., 57.10 FEET; THENCE S. 44°27'32" W., 250.13 FEET; THENCE FROM A TANGENT THAT BEARS S. 46°17'30" W., ALONG A CURVE TO THE LEFT WITH A RADIUS OF 876.00 FEET, THROUGH AN ANGLE OF 36°16'32", AN ARC LENGTH OF 554.62 FEET TO THE NORTHEASTERLY LINE OF EXISTING SIXTH STREET; THENCE ALONG LAST SAID LINE N. 43°41'53" W., 49.05 FEET; THENCE FROM A TANGENT THAT BEARS N. 11°49'56" E., ALONG A CURVE TO THE RIGHT WITH A RADIUS OF 916.00 FEET, THROUGH AN ANGLE OF 32°19'37", AN ARC LENGTH OF 516.82 FEET; THENCE N. 45°50'27" W., 9.64 FEET; THENCE N. 46°17'30" E., 341.54 FEET TO THE POINT OF COMMENCEMENT.

CONTAINING 36,015 SQUARE FEET, MORE OR LESS.
APPENDIX I:

SWPPP Development Process
TABLE I-1
Proposed Outline for the SWPPP

Title Page

Certification Page

Amendments

Introduction

Source Identification

A. Topography Map
B. Site Map
 1. Areas of Soil Disturbance
 2. Surface Water Locations
 3. Areas of Existing Vegetation
 4. Location of Control Practices Used During Construction
 5. Drainage Patterns and Slopes Anticipated After Major Grading Activities are Completed
 6. Areas Used to Store Soils and Wastes
 a) Soil Storage
 b) Waste Storage
 c) Materials Storage
 7. Vehicle and Equipment Storage and Service Areas
 8. Existing and Planned Paved Areas and Buildings
 9. Location of Post-Construction Control Practices

Narrative Descriptions

A. Existing Site Conditions
B. Site Estimates and Description of On Site Soil
C. Pollutants Likely to be Present in Storm Water Discharges
D. Toxic Materials
E. Erosion and Sediment Control Practices
1. General Practices
2. Soil Stabilization
3. Practices to Reduce Tracking Sediment Onto Public and Private Roads
4. Wind Erosion
 a) Dust control
 b) Sweeping
5. Practices to Minimize Contact with Storm Water
 a) Construction Vehicles and Equipment
 i. Maintenance
 ii. Fueling
 iii. Washing
 b) Materials
6. Construction Material Loading, Unloading, and Access Areas
7. Waste Management and Disposal
 a) Concrete Wash-Out
 b) Concrete / Asphalt Debris
 c) Miscellaneous Waste
8. Preconstruction Control Practices
F. Non-Storm Water Management
G. Maintenance, Inspection, and Repair of Structural Controls
H. Spill Prevention Control
 1. Minor Spills
 2. Major Spills
TABLE I-1

Proposed Outline for the SWPPP (Continued)

I. Post-Construction Storm Water Management
J. Personnel Training
K. List of Contractors / Subcontractors
L. Other Plans
M. Monitoring
 1. General Plan Summary
 2. Site Inspections
 3. Compliance Certification
 4. Noncompliance Reporting
 5. Records
CHART I-1
SWPPP DEVELOPMENT PROCESS - CONCEPTUAL SWPPP FOR RMP AREA

RMP Approval

Develop Conceptual SWPPP for RMP Area Per Proposed Outline in Table I-1 (As Appropriate)

PLANNING AND ORGANIZATION Includes Description of Pollution Prevention Team

ASSESSMENT

BMP SELECTION/PLAN DESIGN

Submit Conceptual SWPPP for RMP Area to RWQCB 120 Days After Approval of RMP

IMPLEMENTATION PHASE
Develop Site-Specific SWPPP for Individual Projects Prior to Construction

Go to Chart I-2
CHART I-2
SWPPP DEVELOPMENT PROCESS - SITE SPECIFIC SWPPP

START

Develop Site Specific SWPPP
Per Proposed Outline in Table I-1

PLANNING AND ORGANIZATION
Form SWPPP Team [Include Name, Company and Phone No.]
Review Conceptual SWPPP for BMP Area

ASSESSMENT
Refer to Conceptual SWPPP
Refine as Necessary for Specific Project

BMP SELECTION/PLAN DESIGN
Refer to Conceptual SWPPP
Refine as Necessary for Specific Project

Prepare/Revise Notice of Intent (NOI) and Certifications and Submit to SWRCB
Submit Site-Specific SWPPP to RWQCB

Finalize Site-Specific SWPPP and Have Available 30 days Prior to Commencement of Construction

IMPLEMENTATION
Including:
- Train Employees
- Implement BMPs

EVALUATION/MONITORING
Including:
- Perform Site Inspections/BMP Evaluation/Monitoring
- Keep Records and Report to RWQCB as Necessary
- Annually Certify, Based on Inspections that Site is in Compliance

Review and Revise SWPPP as Required by Site Activities on Monthly basis, or as Needed

Maintain SWPPP Ozone
1. Offsite runoff during construction will be controlled as discussed in Section 4.3.3. Following construction, the site will be covered by parking lots, parking structures, streets, building foundations, landscaping, and parking areas (covered fill), which will prevent runoff from contacting any chemicals present in soils. As such, surface water runoff does not represent a mechanism through which chemicals will be released.

2. Groundwater beneath the site is not one and will not be used as a source of drinking water as it is not suitable for such uses due to high Total Dissolved Solids (TDS) and limited yield. Thus, residents and commercial workers will not have any direct contact (i.e., through either ingestion or dermal contact) with groundwater. Dermal contact with ground water that could potentially occur during construction or other subsurface digging activities will be controlled through implementation of management measures described in Section 4.3.8.

3. Park and landscaped areas will be covered by between 1.0 and 1.5 feet of Fill. The remainder of the South of Channel Area will be paved. Further, the implementation of the long-term management measures described in Section 5.3 will prevent uncontrolled subsurface digging activities, precluding all pathways in which direct contact with contaminants in the soil could occur. Therefore, these pathways are considered incomplete and are not included in the evaluation.

4. Potentially complete exposure pathways for further consideration.